lightning/docs/Trainer/Training Loop.md

73 lines
2.0 KiB
Markdown
Raw Normal View History

2019-06-27 16:13:55 +00:00
The lightning training loop handles everything except the actual computations of your model. To decide what will happen in your training loop, define the [training_step function](../../Pytorch-lightning/LightningModule/#training_step).
Below are all the things lightning automates for you in the training loop.
2019-06-27 15:22:13 +00:00
---
#### Accumulated gradients
Accumulated gradients runs K small batches of size N before doing a backwards pass. The effect is a large effective batch size of size KxN.
``` {.python}
2019-06-27 15:59:27 +00:00
# DEFAULT (ie: no accumulated grads)
2019-06-27 15:22:13 +00:00
trainer = Trainer(accumulate_grad_batches=1)
```
2019-06-27 15:59:27 +00:00
---
#### Anneal Learning rate
Cut the learning rate by 10 at every epoch listed in this list.
``` {.python}
# DEFAULT (don't anneal)
trainer = Trainer(lr_scheduler_milestones=None)
# cut LR by 10 at 100, 200, and 300 epochs
2019-07-17 19:56:55 +00:00
trainer = Trainer(lr_scheduler_milestones='100, 200, 300')
2019-06-27 15:59:27 +00:00
```
2019-06-27 15:27:11 +00:00
---
#### Force training for min or max epochs
It can be useful to force training for a minimum number of epochs or limit to a max number
``` {.python}
2019-06-27 15:59:27 +00:00
# DEFAULT
2019-06-27 15:27:11 +00:00
trainer = Trainer(min_nb_epochs=1, max_nb_epochs=1000)
```
2019-06-27 15:59:27 +00:00
2019-06-27 17:29:01 +00:00
---
#### Force disable early stop
Use this to turn off early stopping and run training to the [max_epoch](#force-training-for-min-or-max-epochs)
``` {.python}
# DEFAULT
trainer = Trainer(enable_early_stop=True)
```
2019-06-28 22:00:57 +00:00
---
#### Gradient Clipping
Use this to turn off early stopping and run training to the [max_epoch](#force-training-for-min-or-max-epochs)
``` {.python}
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip=0)
```
2019-06-27 15:59:27 +00:00
---
#### Inspect gradient norms
Looking at grad norms can help you figure out where training might be going wrong.
``` {.python}
# DEFAULT (-1 doesn't track norms)
trainer = Trainer(track_grad_norm=-1)
# track the LP norm (P=2 here)
trainer = Trainer(track_grad_norm=2)
```
---
#### Set how much of the training set to check
2019-06-27 17:29:01 +00:00
If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag
2019-06-27 15:59:27 +00:00
``` {.python}
# DEFAULT
trainer = Trainer(train_percent_check=1.0)
# check 10% only
trainer = Trainer(train_percent_check=0.1)
```