47 lines
1.4 KiB
Python
47 lines
1.4 KiB
Python
|
import torch
|
|||
|
|
|||
|
from pytorch_lightning.metrics.functional.nlp import bleu_score
|
|||
|
from pytorch_lightning.metrics.metric import Metric
|
|||
|
|
|||
|
|
|||
|
class BLEUScore(Metric):
|
|||
|
"""
|
|||
|
Calculate BLEU score of machine translated text with one or more references.
|
|||
|
|
|||
|
Example:
|
|||
|
|
|||
|
>>> translate_corpus = ['the cat is on the mat'.split()]
|
|||
|
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]]
|
|||
|
>>> metric = BLEUScore()
|
|||
|
>>> metric(translate_corpus, reference_corpus)
|
|||
|
tensor(0.7598)
|
|||
|
"""
|
|||
|
|
|||
|
def __init__(self, n_gram: int = 4, smooth: bool = False):
|
|||
|
"""
|
|||
|
Args:
|
|||
|
n_gram: Gram value ranged from 1 to 4 (Default 4)
|
|||
|
smooth: Whether or not to apply smoothing – Lin et al. 2004
|
|||
|
"""
|
|||
|
super().__init__(name="bleu")
|
|||
|
self.n_gram = n_gram
|
|||
|
self.smooth = smooth
|
|||
|
|
|||
|
def forward(self, translate_corpus: list, reference_corpus: list) -> torch.Tensor:
|
|||
|
"""
|
|||
|
Actual metric computation
|
|||
|
|
|||
|
Args:
|
|||
|
translate_corpus: An iterable of machine translated corpus
|
|||
|
reference_corpus: An iterable of iterables of reference corpus
|
|||
|
|
|||
|
Return:
|
|||
|
torch.Tensor: BLEU Score
|
|||
|
"""
|
|||
|
return bleu_score(
|
|||
|
translate_corpus=translate_corpus,
|
|||
|
reference_corpus=reference_corpus,
|
|||
|
n_gram=self.n_gram,
|
|||
|
smooth=self.smooth,
|
|||
|
).to(self.device, self.dtype)
|