lightning/tests/utilities/test_cli.py

698 lines
27 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import pickle
import sys
from argparse import Namespace
from contextlib import redirect_stdout
from io import StringIO
from typing import List, Optional, Union
from unittest import mock
import pytest
import torch
import yaml
from packaging import version
from pytorch_lightning import Callback, LightningDataModule, LightningModule, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.plugins.environments import SLURMEnvironment
from pytorch_lightning.utilities import _TPU_AVAILABLE
from pytorch_lightning.utilities.cli import instantiate_class, LightningArgumentParser, LightningCLI, SaveConfigCallback
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
from tests.helpers import BoringDataModule, BoringModel
from tests.helpers.runif import RunIf
torchvision_version = version.parse("0")
if _TORCHVISION_AVAILABLE:
torchvision_version = version.parse(__import__("torchvision").__version__)
@mock.patch("argparse.ArgumentParser.parse_args")
def test_default_args(mock_argparse, tmpdir):
"""Tests default argument parser for Trainer"""
mock_argparse.return_value = Namespace(**Trainer.default_attributes())
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
args = parser.parse_args([])
args.max_epochs = 5
trainer = Trainer.from_argparse_args(args)
assert isinstance(trainer, Trainer)
assert trainer.max_epochs == 5
@pytest.mark.parametrize("cli_args", [["--accumulate_grad_batches=22"], ["--weights_save_path=./"], []])
def test_add_argparse_args_redefined(cli_args):
"""Redefines some default Trainer arguments via the cli and
tests the Trainer initialization correctness.
"""
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
parser.add_lightning_class_args(Trainer, None)
args = parser.parse_args(cli_args)
# make sure we can pickle args
pickle.dumps(args)
# Check few deprecated args are not in namespace:
for depr_name in ("gradient_clip", "nb_gpu_nodes", "max_nb_epochs"):
assert depr_name not in args
trainer = Trainer.from_argparse_args(args=args)
pickle.dumps(trainer)
assert isinstance(trainer, Trainer)
@pytest.mark.parametrize("cli_args", [["--callbacks=1", "--logger"], ["--foo", "--bar=1"]])
def test_add_argparse_args_redefined_error(cli_args, monkeypatch):
"""Asserts error raised in case of passing not default cli arguments."""
class _UnkArgError(Exception):
pass
def _raise():
raise _UnkArgError
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
parser.add_lightning_class_args(Trainer, None)
monkeypatch.setattr(parser, "exit", lambda *args: _raise(), raising=True)
with pytest.raises(_UnkArgError):
parser.parse_args(cli_args)
@pytest.mark.parametrize(
["cli_args", "expected"],
[
("--auto_lr_find=True --auto_scale_batch_size=power", dict(auto_lr_find=True, auto_scale_batch_size="power")),
(
"--auto_lr_find any_string --auto_scale_batch_size ON",
dict(auto_lr_find="any_string", auto_scale_batch_size=True),
),
("--auto_lr_find=Yes --auto_scale_batch_size=On", dict(auto_lr_find=True, auto_scale_batch_size=True)),
("--auto_lr_find Off --auto_scale_batch_size No", dict(auto_lr_find=False, auto_scale_batch_size=False)),
("--auto_lr_find TRUE --auto_scale_batch_size FALSE", dict(auto_lr_find=True, auto_scale_batch_size=False)),
("--tpu_cores=8", dict(tpu_cores=8)),
("--tpu_cores=1,", dict(tpu_cores="1,")),
("--limit_train_batches=100", dict(limit_train_batches=100)),
("--limit_train_batches 0.8", dict(limit_train_batches=0.8)),
("--weights_summary=null", dict(weights_summary=None)),
(
"",
dict(
# These parameters are marked as Optional[...] in Trainer.__init__,
# with None as default. They should not be changed by the argparse
# interface.
min_steps=None,
max_steps=None,
log_gpu_memory=None,
distributed_backend=None,
weights_save_path=None,
resume_from_checkpoint=None,
profiler=None,
),
),
],
)
def test_parse_args_parsing(cli_args, expected):
"""Test parsing simple types and None optionals not modified."""
cli_args = cli_args.split(" ") if cli_args else []
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
parser.add_lightning_class_args(Trainer, None)
with mock.patch("sys.argv", ["any.py"] + cli_args):
args = parser.parse_args()
for k, v in expected.items():
assert getattr(args, k) == v
if "tpu_cores" not in expected or _TPU_AVAILABLE:
assert Trainer.from_argparse_args(args)
@pytest.mark.parametrize(
["cli_args", "expected", "instantiate"],
[
(["--gpus", "[0, 2]"], dict(gpus=[0, 2]), False),
(["--tpu_cores=[1,3]"], dict(tpu_cores=[1, 3]), False),
(['--accumulate_grad_batches={"5":3,"10":20}'], dict(accumulate_grad_batches={5: 3, 10: 20}), True),
],
)
def test_parse_args_parsing_complex_types(cli_args, expected, instantiate):
"""Test parsing complex types."""
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
parser.add_lightning_class_args(Trainer, None)
with mock.patch("sys.argv", ["any.py"] + cli_args):
args = parser.parse_args()
for k, v in expected.items():
assert getattr(args, k) == v
if instantiate:
assert Trainer.from_argparse_args(args)
@pytest.mark.parametrize(["cli_args", "expected_gpu"], [("--gpus 1", [0]), ("--gpus 0,", [0]), ("--gpus 0,1", [0, 1])])
def test_parse_args_parsing_gpus(monkeypatch, cli_args, expected_gpu):
"""Test parsing of gpus and instantiation of Trainer."""
monkeypatch.setattr("torch.cuda.device_count", lambda: 2)
cli_args = cli_args.split(" ") if cli_args else []
parser = LightningArgumentParser(add_help=False, parse_as_dict=False)
parser.add_lightning_class_args(Trainer, None)
with mock.patch("sys.argv", ["any.py"] + cli_args):
args = parser.parse_args()
trainer = Trainer.from_argparse_args(args)
assert trainer.data_parallel_device_ids == expected_gpu
@pytest.mark.skipif(
sys.version_info < (3, 7),
reason="signature inspection while mocking is not working in Python < 3.7 despite autospec",
)
@pytest.mark.parametrize(
["cli_args", "extra_args"],
[
({}, {}),
(dict(logger=False), {}),
(dict(logger=False), dict(logger=True)),
(dict(logger=False), dict(checkpoint_callback=True)),
],
)
def test_init_from_argparse_args(cli_args, extra_args):
unknown_args = dict(unknown_arg=0)
# unkown args in the argparser/namespace should be ignored
with mock.patch("pytorch_lightning.Trainer.__init__", autospec=True, return_value=None) as init:
trainer = Trainer.from_argparse_args(Namespace(**cli_args, **unknown_args), **extra_args)
expected = dict(cli_args)
expected.update(extra_args) # extra args should override any cli arg
init.assert_called_with(trainer, **expected)
# passing in unknown manual args should throw an error
with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'unknown_arg'"):
Trainer.from_argparse_args(Namespace(**cli_args), **extra_args, **unknown_args)
class Model(LightningModule):
def __init__(self, model_param: int):
super().__init__()
self.model_param = model_param
def _model_builder(model_param: int) -> Model:
return Model(model_param)
def _trainer_builder(
limit_train_batches: int, fast_dev_run: bool = False, callbacks: Optional[Union[List[Callback], Callback]] = None
) -> Trainer:
return Trainer(limit_train_batches=limit_train_batches, fast_dev_run=fast_dev_run, callbacks=callbacks)
@pytest.mark.parametrize(["trainer_class", "model_class"], [(Trainer, Model), (_trainer_builder, _model_builder)])
def test_lightning_cli(trainer_class, model_class, monkeypatch):
"""Test that LightningCLI correctly instantiates model, trainer and calls fit."""
expected_model = dict(model_param=7)
expected_trainer = dict(limit_train_batches=100)
def fit(trainer, model):
for k, v in expected_model.items():
assert getattr(model, k) == v
for k, v in expected_trainer.items():
assert getattr(trainer, k) == v
save_callback = [x for x in trainer.callbacks if isinstance(x, SaveConfigCallback)]
assert len(save_callback) == 1
save_callback[0].on_train_start(trainer, model)
def on_train_start(callback, trainer, _):
config_dump = callback.parser.dump(callback.config, skip_none=False)
for k, v in expected_model.items():
assert f" {k}: {v}" in config_dump
for k, v in expected_trainer.items():
assert f" {k}: {v}" in config_dump
trainer.ran_asserts = True
monkeypatch.setattr(Trainer, "fit", fit)
monkeypatch.setattr(SaveConfigCallback, "on_train_start", on_train_start)
with mock.patch("sys.argv", ["any.py", "--model.model_param=7", "--trainer.limit_train_batches=100"]):
cli = LightningCLI(model_class, trainer_class=trainer_class, save_config_callback=SaveConfigCallback)
assert hasattr(cli.trainer, "ran_asserts") and cli.trainer.ran_asserts
def test_lightning_cli_args_callbacks(tmpdir):
callbacks = [
dict(
class_path="pytorch_lightning.callbacks.LearningRateMonitor",
init_args=dict(logging_interval="epoch", log_momentum=True),
),
dict(class_path="pytorch_lightning.callbacks.ModelCheckpoint", init_args=dict(monitor="NAME")),
]
class TestModel(BoringModel):
def on_fit_start(self):
callback = [c for c in self.trainer.callbacks if isinstance(c, LearningRateMonitor)]
assert len(callback) == 1
assert callback[0].logging_interval == "epoch"
assert callback[0].log_momentum is True
callback = [c for c in self.trainer.callbacks if isinstance(c, ModelCheckpoint)]
assert len(callback) == 1
assert callback[0].monitor == "NAME"
self.trainer.ran_asserts = True
with mock.patch("sys.argv", ["any.py", f"--trainer.callbacks={json.dumps(callbacks)}"]):
cli = LightningCLI(TestModel, trainer_defaults=dict(default_root_dir=str(tmpdir), fast_dev_run=True))
assert cli.trainer.ran_asserts
def test_lightning_cli_configurable_callbacks(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_lightning_class_args(LearningRateMonitor, "learning_rate_monitor")
cli_args = [
f"--trainer.default_root_dir={tmpdir}",
"--trainer.max_epochs=1",
"--learning_rate_monitor.logging_interval=epoch",
]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(BoringModel)
callback = [c for c in cli.trainer.callbacks if isinstance(c, LearningRateMonitor)]
assert len(callback) == 1
assert callback[0].logging_interval == "epoch"
def test_lightning_cli_args_cluster_environments(tmpdir):
plugins = [dict(class_path="pytorch_lightning.plugins.environments.SLURMEnvironment")]
class TestModel(BoringModel):
def on_fit_start(self):
# Ensure SLURMEnvironment is set, instead of default LightningEnvironment
assert isinstance(self.trainer.accelerator_connector._cluster_environment, SLURMEnvironment)
self.trainer.ran_asserts = True
with mock.patch("sys.argv", ["any.py", f"--trainer.plugins={json.dumps(plugins)}"]):
cli = LightningCLI(TestModel, trainer_defaults=dict(default_root_dir=str(tmpdir), fast_dev_run=True))
assert cli.trainer.ran_asserts
def test_lightning_cli_args(tmpdir):
cli_args = [
f"--data.data_dir={tmpdir}",
f"--trainer.default_root_dir={tmpdir}",
"--trainer.max_epochs=1",
"--trainer.weights_summary=null",
"--seed_everything=1234",
]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = LightningCLI(BoringModel, BoringDataModule, trainer_defaults={"callbacks": [LearningRateMonitor()]})
assert cli.config["seed_everything"] == 1234
config_path = tmpdir / "lightning_logs" / "version_0" / "config.yaml"
assert os.path.isfile(config_path)
with open(config_path) as f:
config = yaml.safe_load(f.read())
assert "model" not in config and "model" not in cli.config # no arguments to include
assert config["data"] == cli.config["data"]
assert config["trainer"] == cli.config["trainer"]
def test_lightning_cli_save_config_cases(tmpdir):
config_path = tmpdir / "config.yaml"
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.logger=False", "--trainer.fast_dev_run=1"]
# With fast_dev_run!=False config should not be saved
with mock.patch("sys.argv", ["any.py"] + cli_args):
LightningCLI(BoringModel)
assert not os.path.isfile(config_path)
# With fast_dev_run==False config should be saved
cli_args[-1] = "--trainer.max_epochs=1"
with mock.patch("sys.argv", ["any.py"] + cli_args):
LightningCLI(BoringModel)
assert os.path.isfile(config_path)
# If run again on same directory exception should be raised since config file already exists
with mock.patch("sys.argv", ["any.py"] + cli_args), pytest.raises(RuntimeError):
LightningCLI(BoringModel)
def test_lightning_cli_config_and_subclass_mode(tmpdir):
config = dict(
model=dict(class_path="tests.helpers.BoringModel"),
data=dict(class_path="tests.helpers.BoringDataModule", init_args=dict(data_dir=str(tmpdir))),
trainer=dict(default_root_dir=str(tmpdir), max_epochs=1, weights_summary=None),
)
config_path = tmpdir / "config.yaml"
with open(config_path, "w") as f:
f.write(yaml.dump(config))
with mock.patch("sys.argv", ["any.py", "--config", str(config_path)]):
cli = LightningCLI(
BoringModel,
BoringDataModule,
subclass_mode_model=True,
subclass_mode_data=True,
trainer_defaults={"callbacks": LearningRateMonitor()},
)
config_path = tmpdir / "lightning_logs" / "version_0" / "config.yaml"
assert os.path.isfile(config_path)
with open(config_path) as f:
config = yaml.safe_load(f.read())
assert config["model"] == cli.config["model"]
assert config["data"] == cli.config["data"]
assert config["trainer"] == cli.config["trainer"]
def any_model_any_data_cli():
LightningCLI(LightningModule, LightningDataModule, subclass_mode_model=True, subclass_mode_data=True)
def test_lightning_cli_help():
cli_args = ["any.py", "--help"]
out = StringIO()
with mock.patch("sys.argv", cli_args), redirect_stdout(out), pytest.raises(SystemExit):
any_model_any_data_cli()
out = out.getvalue()
assert "--print_config" in out
assert "--config" in out
assert "--seed_everything" in out
assert "--model.help" in out
assert "--data.help" in out
skip_params = {"self"}
for param in inspect.signature(Trainer.__init__).parameters.keys():
if param not in skip_params:
assert f"--trainer.{param}" in out
cli_args = ["any.py", "--data.help=tests.helpers.BoringDataModule"]
out = StringIO()
with mock.patch("sys.argv", cli_args), redirect_stdout(out), pytest.raises(SystemExit):
any_model_any_data_cli()
assert "--data.init_args.data_dir" in out.getvalue()
def test_lightning_cli_print_config():
cli_args = [
"any.py",
"--seed_everything=1234",
"--model=tests.helpers.BoringModel",
"--data=tests.helpers.BoringDataModule",
"--print_config",
]
out = StringIO()
with mock.patch("sys.argv", cli_args), redirect_stdout(out), pytest.raises(SystemExit):
any_model_any_data_cli()
outval = yaml.safe_load(out.getvalue())
assert outval["seed_everything"] == 1234
assert outval["model"]["class_path"] == "tests.helpers.BoringModel"
assert outval["data"]["class_path"] == "tests.helpers.BoringDataModule"
def test_lightning_cli_submodules(tmpdir):
class MainModule(BoringModel):
def __init__(self, submodule1: LightningModule, submodule2: LightningModule, main_param: int = 1):
super().__init__()
self.submodule1 = submodule1
self.submodule2 = submodule2
config = """model:
main_param: 2
submodule1:
class_path: tests.helpers.BoringModel
submodule2:
class_path: tests.helpers.BoringModel
"""
config_path = tmpdir / "config.yaml"
with open(config_path, "w") as f:
f.write(config)
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.max_epochs=1", f"--config={str(config_path)}"]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = LightningCLI(MainModule)
assert cli.config["model"]["main_param"] == 2
assert isinstance(cli.model.submodule1, BoringModel)
assert isinstance(cli.model.submodule2, BoringModel)
@pytest.mark.skipif(torchvision_version < version.parse("0.8.0"), reason="torchvision>=0.8.0 is required")
def test_lightning_cli_torch_modules(tmpdir):
class TestModule(BoringModel):
def __init__(self, activation: torch.nn.Module = None, transform: Optional[List[torch.nn.Module]] = None):
super().__init__()
self.activation = activation
self.transform = transform
config = """model:
activation:
class_path: torch.nn.LeakyReLU
init_args:
negative_slope: 0.2
transform:
- class_path: torchvision.transforms.Resize
init_args:
size: 64
- class_path: torchvision.transforms.CenterCrop
init_args:
size: 64
"""
config_path = tmpdir / "config.yaml"
with open(config_path, "w") as f:
f.write(config)
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.max_epochs=1", f"--config={str(config_path)}"]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = LightningCLI(TestModule)
assert isinstance(cli.model.activation, torch.nn.LeakyReLU)
assert cli.model.activation.negative_slope == 0.2
assert len(cli.model.transform) == 2
assert all(isinstance(v, torch.nn.Module) for v in cli.model.transform)
class BoringModelRequiredClasses(BoringModel):
def __init__(self, num_classes: int, batch_size: int = 8):
super().__init__()
self.num_classes = num_classes
self.batch_size = batch_size
class BoringDataModuleBatchSizeAndClasses(BoringDataModule):
def __init__(self, batch_size: int = 8):
super().__init__()
self.batch_size = batch_size
self.num_classes = 5 # only available after instantiation
def test_lightning_cli_link_arguments(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.link_arguments("data.batch_size", "model.batch_size")
parser.link_arguments("data.num_classes", "model.num_classes", apply_on="instantiate")
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.max_epochs=1", "--data.batch_size=12"]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(BoringModelRequiredClasses, BoringDataModuleBatchSizeAndClasses)
assert cli.model.batch_size == 12
assert cli.model.num_classes == 5
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.link_arguments("data.batch_size", "model.init_args.batch_size")
parser.link_arguments("data.num_classes", "model.init_args.num_classes", apply_on="instantiate")
cli_args[-1] = "--model=tests.utilities.test_cli.BoringModelRequiredClasses"
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(BoringModelRequiredClasses, BoringDataModuleBatchSizeAndClasses, subclass_mode_model=True)
assert cli.model.batch_size == 8
assert cli.model.num_classes == 5
class EarlyExitTestModel(BoringModel):
def on_fit_start(self):
raise KeyboardInterrupt()
@pytest.mark.parametrize("logger", (False, True))
@pytest.mark.parametrize(
"trainer_kwargs",
(
dict(accelerator="ddp_cpu"),
dict(accelerator="ddp_cpu", plugins="ddp_find_unused_parameters_false"),
pytest.param({"tpu_cores": 1}, marks=RunIf(tpu=True)),
),
)
def test_cli_ddp_spawn_save_config_callback(tmpdir, logger, trainer_kwargs):
with mock.patch("sys.argv", ["any.py"]), pytest.raises(KeyboardInterrupt):
LightningCLI(
EarlyExitTestModel,
trainer_defaults={
"default_root_dir": str(tmpdir),
"logger": logger,
"max_steps": 1,
"max_epochs": 1,
**trainer_kwargs,
},
)
if logger:
config_dir = tmpdir / "lightning_logs"
# no more version dirs should get created
assert os.listdir(config_dir) == ["version_0"]
config_path = config_dir / "version_0" / "config.yaml"
else:
config_path = tmpdir / "config.yaml"
assert os.path.isfile(config_path)
def test_cli_config_overwrite(tmpdir):
trainer_defaults = {"default_root_dir": str(tmpdir), "logger": False, "max_steps": 1, "max_epochs": 1}
with mock.patch("sys.argv", ["any.py"]):
LightningCLI(BoringModel, trainer_defaults=trainer_defaults)
with mock.patch("sys.argv", ["any.py"]), pytest.raises(RuntimeError, match="Aborting to avoid overwriting"):
LightningCLI(BoringModel, trainer_defaults=trainer_defaults)
with mock.patch("sys.argv", ["any.py"]):
LightningCLI(BoringModel, save_config_overwrite=True, trainer_defaults=trainer_defaults)
def test_lightning_cli_optimizer(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_optimizer_args(torch.optim.Adam)
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.max_epochs=1"]
match = (
"BoringModel.configure_optimizers` will be overridden by "
"`MyLightningCLI.add_configure_optimizers_method_to_model`"
)
with mock.patch("sys.argv", ["any.py"] + cli_args), pytest.warns(UserWarning, match=match):
cli = MyLightningCLI(BoringModel)
assert cli.model.configure_optimizers is not BoringModel.configure_optimizers
assert len(cli.trainer.optimizers) == 1
assert isinstance(cli.trainer.optimizers[0], torch.optim.Adam)
assert len(cli.trainer.lr_schedulers) == 0
def test_lightning_cli_optimizer_and_lr_scheduler(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_optimizer_args(torch.optim.Adam)
parser.add_lr_scheduler_args(torch.optim.lr_scheduler.ExponentialLR)
cli_args = [f"--trainer.default_root_dir={tmpdir}", "--trainer.max_epochs=1", "--lr_scheduler.gamma=0.8"]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(BoringModel)
assert cli.model.configure_optimizers is not BoringModel.configure_optimizers
assert len(cli.trainer.optimizers) == 1
assert isinstance(cli.trainer.optimizers[0], torch.optim.Adam)
assert len(cli.trainer.lr_schedulers) == 1
assert isinstance(cli.trainer.lr_schedulers[0]["scheduler"], torch.optim.lr_scheduler.ExponentialLR)
assert cli.trainer.lr_schedulers[0]["scheduler"].gamma == 0.8
def test_lightning_cli_optimizer_and_lr_scheduler_subclasses(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_optimizer_args((torch.optim.SGD, torch.optim.Adam))
parser.add_lr_scheduler_args((torch.optim.lr_scheduler.StepLR, torch.optim.lr_scheduler.ExponentialLR))
optimizer_arg = dict(class_path="torch.optim.Adam", init_args=dict(lr=0.01))
lr_scheduler_arg = dict(class_path="torch.optim.lr_scheduler.StepLR", init_args=dict(step_size=50))
cli_args = [
f"--trainer.default_root_dir={tmpdir}",
"--trainer.max_epochs=1",
f"--optimizer={json.dumps(optimizer_arg)}",
f"--lr_scheduler={json.dumps(lr_scheduler_arg)}",
]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(BoringModel)
assert len(cli.trainer.optimizers) == 1
assert isinstance(cli.trainer.optimizers[0], torch.optim.Adam)
assert len(cli.trainer.lr_schedulers) == 1
assert isinstance(cli.trainer.lr_schedulers[0]["scheduler"], torch.optim.lr_scheduler.StepLR)
assert cli.trainer.lr_schedulers[0]["scheduler"].step_size == 50
def test_lightning_cli_optimizers_and_lr_scheduler_with_link_to(tmpdir):
class MyLightningCLI(LightningCLI):
def add_arguments_to_parser(self, parser):
parser.add_optimizer_args(torch.optim.Adam, nested_key="optim1", link_to="model.optim1")
parser.add_optimizer_args((torch.optim.ASGD, torch.optim.SGD), nested_key="optim2", link_to="model.optim2")
parser.add_lr_scheduler_args(torch.optim.lr_scheduler.ExponentialLR, link_to="model.scheduler")
class TestModel(BoringModel):
def __init__(self, optim1: dict, optim2: dict, scheduler: dict):
super().__init__()
self.optim1 = instantiate_class(self.parameters(), optim1)
self.optim2 = instantiate_class(self.parameters(), optim2)
self.scheduler = instantiate_class(self.optim1, scheduler)
cli_args = [
f"--trainer.default_root_dir={tmpdir}",
"--trainer.max_epochs=1",
"--optim2.class_path=torch.optim.SGD",
"--optim2.init_args.lr=0.01",
"--lr_scheduler.gamma=0.2",
]
with mock.patch("sys.argv", ["any.py"] + cli_args):
cli = MyLightningCLI(TestModel)
assert isinstance(cli.model.optim1, torch.optim.Adam)
assert isinstance(cli.model.optim2, torch.optim.SGD)
assert isinstance(cli.model.scheduler, torch.optim.lr_scheduler.ExponentialLR)
@pytest.mark.parametrize("run", (False, True))
def test_lightning_cli_disabled_run(run):
with mock.patch("sys.argv", ["any.py"]), mock.patch("pytorch_lightning.Trainer.fit") as fit_mock:
cli = LightningCLI(BoringModel, run=run)
fit_mock.call_count == run
assert isinstance(cli.trainer, Trainer)
assert isinstance(cli.model, LightningModule)