2021-02-22 00:02:31 +00:00
|
|
|
from unittest.mock import Mock
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
2021-03-23 08:35:51 +00:00
|
|
|
|
2021-03-22 11:43:53 +00:00
|
|
|
from pytorch_lightning import Trainer
|
2021-02-22 00:02:31 +00:00
|
|
|
from pytorch_lightning.accelerators import CPUAccelerator
|
|
|
|
from pytorch_lightning.plugins import SingleDevicePlugin
|
|
|
|
from pytorch_lightning.plugins.precision import MixedPrecisionPlugin
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-03-22 11:43:53 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel
|
2021-02-22 00:02:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_unsupported_precision_plugins():
|
|
|
|
""" Test error messages are raised for unsupported precision plugins with CPU. """
|
|
|
|
trainer = Mock()
|
|
|
|
model = Mock()
|
|
|
|
accelerator = CPUAccelerator(
|
2021-02-24 09:08:21 +00:00
|
|
|
training_type_plugin=SingleDevicePlugin(torch.device("cpu")), precision_plugin=MixedPrecisionPlugin()
|
2021-02-22 00:02:31 +00:00
|
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r"amp \+ cpu is not supported."):
|
|
|
|
accelerator.setup(trainer=trainer, model=model)
|
2021-03-22 11:43:53 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("delay_dispatch", [True, False])
|
|
|
|
def test_plugin_setup_optimizers_in_pre_dispatch(tmpdir, delay_dispatch):
|
|
|
|
"""
|
|
|
|
Test when using a custom training type plugin that delays setup optimizers,
|
|
|
|
we do not call setup optimizers till ``pre_dispatch``.
|
|
|
|
"""
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def on_fit_start(self):
|
|
|
|
if delay_dispatch:
|
|
|
|
# Ensure we haven't setup optimizers if we've delayed dispatch
|
|
|
|
assert len(self.trainer.optimizers) == 0
|
|
|
|
else:
|
|
|
|
assert len(self.trainer.optimizers) > 0
|
|
|
|
|
|
|
|
def on_fit_end(self):
|
|
|
|
assert len(self.trainer.optimizers) > 0
|
|
|
|
|
|
|
|
class CustomPlugin(SingleDevicePlugin):
|
|
|
|
@property
|
|
|
|
def setup_optimizers_in_pre_dispatch(self) -> bool:
|
|
|
|
return delay_dispatch
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
fast_dev_run=True,
|
|
|
|
plugins=CustomPlugin(device=torch.device("cpu"))
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|