118 lines
4.3 KiB
Python
118 lines
4.3 KiB
Python
|
import torch
|
||
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
||
|
from pytorch_lightning.overrides.data_parallel import LightningDataParallel
|
||
|
from torch import optim
|
||
|
|
||
|
try:
|
||
|
from apex import amp
|
||
|
except ImportError:
|
||
|
APEX_AVAILABLE = False
|
||
|
else:
|
||
|
APEX_AVAILABLE = True
|
||
|
|
||
|
|
||
|
class DataParallelBackend(object):
|
||
|
|
||
|
def __init__(self, trainer):
|
||
|
self.trainer = trainer
|
||
|
self.model_autocast_original_forward = None
|
||
|
|
||
|
def setup(self, model):
|
||
|
# call setup after the ddp process has connected
|
||
|
if not self.trainer.testing:
|
||
|
self.trainer.setup('fit')
|
||
|
model.setup('fit')
|
||
|
|
||
|
# put model on correct device
|
||
|
model.cuda(self.trainer.root_gpu)
|
||
|
|
||
|
# CHOOSE OPTIMIZER
|
||
|
# allow for lr schedulers as well
|
||
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
||
|
self.trainer.optimizers = optimizers
|
||
|
self.trainer.lr_schedulers = lr_schedulers
|
||
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
||
|
|
||
|
# hack forward to do autocast for the user
|
||
|
self.model_autocast_original_forward = model.forward
|
||
|
|
||
|
# init half precision
|
||
|
if self.trainer.use_amp:
|
||
|
model = self.__init_half_precision(model)
|
||
|
|
||
|
# init torch data parallel
|
||
|
model = self.__init_torch_data_parallel(model)
|
||
|
|
||
|
self.trainer.model = model
|
||
|
|
||
|
def __init_torch_data_parallel(self, model):
|
||
|
# create list of device ids
|
||
|
device_ids = self.trainer.data_parallel_device_ids
|
||
|
if isinstance(device_ids, int):
|
||
|
device_ids = list(range(device_ids))
|
||
|
|
||
|
# set dp device
|
||
|
torch.cuda.set_device(self.trainer.root_gpu)
|
||
|
model = LightningDataParallel(model, device_ids=device_ids)
|
||
|
return model
|
||
|
|
||
|
def __init_half_precision(self, model):
|
||
|
native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
|
||
|
|
||
|
if native_amp_available:
|
||
|
self.__init_native_amp(model)
|
||
|
else:
|
||
|
model = self.__init_nvidia_apex(model)
|
||
|
return model
|
||
|
|
||
|
def __init_native_amp(self, model):
|
||
|
model.forward = torch.cuda.amp.autocast()(model.forward)
|
||
|
|
||
|
def __init_nvidia_apex(self, model):
|
||
|
# check for this bug (amp + dp + !01 doesn't work)
|
||
|
# https://github.com/NVIDIA/apex/issues/227
|
||
|
if self.trainer.amp_level == 'O2':
|
||
|
raise MisconfigurationException(
|
||
|
f'Amp level {self.trainer.amp_level} with DataParallel is not supported.'
|
||
|
f' See this note from NVIDIA for more info: https://github.com/NVIDIA/apex/issues/227.'
|
||
|
f' We recommend you switch to ddp if you want to use amp')
|
||
|
else:
|
||
|
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
|
||
|
self.reinit_scheduler_properties(optimizers, self.trainer.lr_schedulers)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def train(self):
|
||
|
model = self.trainer.model
|
||
|
results = self.trainer.run_pretrain_routine(model)
|
||
|
return results
|
||
|
|
||
|
def teardown(self):
|
||
|
|
||
|
# replace the original fwd function
|
||
|
self.trainer.model.forward = self.model_autocast_original_forward
|
||
|
|
||
|
def reinit_scheduler_properties(self, optimizers: list, schedulers: list):
|
||
|
"""
|
||
|
Reinitialize optimizer.step properties added by schedulers
|
||
|
"""
|
||
|
for scheduler in schedulers:
|
||
|
scheduler = scheduler['scheduler']
|
||
|
|
||
|
for optimizer in optimizers:
|
||
|
# check that we dont mix users optimizers and schedulers
|
||
|
if scheduler.optimizer == optimizer:
|
||
|
# Find the mro belonging to the base lr scheduler class
|
||
|
for i, mro in enumerate(scheduler.__class__.__mro__):
|
||
|
is_regular_scheduler = optim.lr_scheduler._LRScheduler
|
||
|
is_lr_reduce_on_plateau = optim.lr_scheduler.ReduceLROnPlateau
|
||
|
if is_regular_scheduler or is_lr_reduce_on_plateau:
|
||
|
idx = i
|
||
|
state = scheduler.state_dict()
|
||
|
else:
|
||
|
state = None
|
||
|
|
||
|
scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer)
|
||
|
if state is not None:
|
||
|
scheduler.load_state_dict(state)
|