lightning/pytorch_lightning/plugins/apex.py

101 lines
3.3 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple
2020-10-19 20:20:17 +00:00
from torch.optim.optimizer import Optimizer
2020-10-19 20:20:17 +00:00
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities.distributed import rank_zero_warn
from pytorch_lightning.utilities import AMPType
try:
from apex import amp
except ImportError:
amp = None
class ApexPlugin:
def __init__(self, trainer=None):
self.trainer = trainer
def connect(self, model, optimizers):
model, optimizers = self.configure_apex(amp, model, optimizers, self.trainer.amp_level)
self.trainer.reinit_scheduler_properties(optimizers, self.trainer.lr_schedulers)
return model, optimizers
def training_step(self, fx, args):
output = fx(args)
return output
def backward(self, closure_loss, optimizer, opt_idx, *args, **kwargs):
closure_loss = amp.scale_loss(closure_loss, optimizer)
# enter apex context
self.trainer.dev_debugger.track_event('AMP', str(AMPType.APEX))
context = closure_loss
closure_loss = closure_loss.__enter__()
# do backward pass
if self.trainer.train_loop.automatic_optimization:
model = self.trainer.get_model()
model.backward(closure_loss, optimizer, opt_idx)
else:
closure_loss.backward(*args, **kwargs)
# exit amp context
a, b, c = None, None, None
error = context.__exit__(a, b, c)
if error:
rank_zero_warn(a, b, c)
raise Exception('apex unscale error')
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
return closure_loss
def configure_apex(
self,
amp: object,
2020-10-19 20:20:17 +00:00
model: LightningModule,
optimizers: List[Optimizer],
amp_level: str,
2020-10-19 20:20:17 +00:00
) -> Tuple[LightningModule, List[Optimizer]]:
r"""
Override to init AMP your own way.
Must return a model and list of optimizers.
Args:
amp: pointer to amp library object.
model: pointer to current :class:`LightningModule`.
optimizers: list of optimizers passed in :meth:`configure_optimizers`.
amp_level: AMP mode chosen ('O1', 'O2', etc...)
Return:
Apex wrapped model and optimizers
Examples:
.. code-block:: python
# Default implementation used by Trainer.
def configure_apex(self, amp, model, optimizers, amp_level):
model, optimizers = amp.initialize(
model, optimizers, opt_level=amp_level,
)
return model, optimizers
"""
model, optimizers = amp.initialize(model, optimizers, opt_level=amp_level)
return model, optimizers