lightning/tests/plugins/test_custom_plugin.py

70 lines
2.5 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Any, Mapping
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.plugins import DDPPlugin, SingleDevicePlugin
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
class CustomParallelPlugin(DDPPlugin):
def __init__(self, **kwargs):
super().__init__(**kwargs)
# Set to None so it will be overwritten by the accelerator connector.
self.sync_batchnorm = None
@RunIf(skip_windows=True)
def test_sync_batchnorm_set(tmpdir):
"""Tests if sync_batchnorm is automatically set for custom plugin."""
model = BoringModel()
plugin = CustomParallelPlugin()
assert plugin.sync_batchnorm is None
trainer = Trainer(max_epochs=1, plugins=[plugin], default_root_dir=tmpdir, sync_batchnorm=True)
trainer.fit(model)
assert plugin.sync_batchnorm is True
@pytest.mark.parametrize("restore_optimizer_and_schedulers", [True, False])
def test_plugin_lightning_restore_optimizer_and_schedulers(tmpdir, restore_optimizer_and_schedulers):
class TestPlugin(SingleDevicePlugin):
load_optimizer_state_dict_called = False
@property
def lightning_restore_optimizer_and_schedulers(self) -> bool:
return restore_optimizer_and_schedulers
def load_optimizer_state_dict(self, checkpoint: Mapping[str, Any]) -> None:
self.load_optimizer_state_dict_called = True
# create ckpt to resume from
checkpoint_path = os.path.join(tmpdir, "model.ckpt")
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
trainer.fit(model)
trainer.save_checkpoint(checkpoint_path)
model = BoringModel()
plugin = TestPlugin(torch.device("cpu"))
trainer = Trainer(
default_root_dir=tmpdir, fast_dev_run=True, plugins=plugin, resume_from_checkpoint=checkpoint_path
)
trainer.fit(model)
assert plugin.load_optimizer_state_dict_called == restore_optimizer_and_schedulers