2021-06-11 15:07:04 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from pl_examples.basic_examples.mnist_datamodule import MNISTDataModule
|
|
|
|
|
|
|
|
|
|
|
|
class LitClassifier(pl.LightningModule):
|
2021-07-26 11:37:35 +00:00
|
|
|
def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001):
|
2021-06-11 15:07:04 +00:00
|
|
|
super().__init__()
|
|
|
|
self.save_hyperparameters()
|
|
|
|
|
|
|
|
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
|
|
|
|
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = x.view(x.size(0), -1)
|
|
|
|
x = torch.relu(self.l1(x))
|
|
|
|
x = torch.relu(self.l2(x))
|
|
|
|
return x
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
y_hat = self(x)
|
|
|
|
loss = F.cross_entropy(y_hat, y)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
probs = self(x)
|
|
|
|
# we currently return the accuracy as the validation_step/test_step is run on the IPU devices.
|
|
|
|
# Outputs from the step functions are sent to the host device, where we calculate the metrics in
|
|
|
|
# validation_epoch_end and test_epoch_end for the test_step.
|
|
|
|
acc = self.accuracy(probs, y)
|
|
|
|
return acc
|
|
|
|
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
|
|
x, y = batch
|
|
|
|
logits = self(x)
|
|
|
|
acc = self.accuracy(logits, y)
|
|
|
|
return acc
|
|
|
|
|
|
|
|
def accuracy(self, logits, y):
|
|
|
|
# currently IPU poptorch doesn't implicit convert bools to tensor
|
|
|
|
# hence we use an explicit calculation for accuracy here. Once fixed in poptorch
|
|
|
|
# we can use the accuracy metric.
|
|
|
|
acc = torch.sum(torch.eq(torch.argmax(logits, -1), y).to(torch.float32)) / len(y)
|
|
|
|
return acc
|
|
|
|
|
|
|
|
def validation_epoch_end(self, outputs) -> None:
|
|
|
|
# since the training step/validation step and test step are run on the IPU device
|
|
|
|
# we must log the average loss outside the step functions.
|
2021-07-26 11:37:35 +00:00
|
|
|
self.log("val_acc", torch.stack(outputs).mean(), prog_bar=True)
|
2021-06-11 15:07:04 +00:00
|
|
|
|
|
|
|
def test_epoch_end(self, outputs) -> None:
|
2021-07-26 11:37:35 +00:00
|
|
|
self.log("test_acc", torch.stack(outputs).mean())
|
2021-06-11 15:07:04 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self):
|
|
|
|
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
|
|
|
|
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
if __name__ == "__main__":
|
2021-06-11 15:07:04 +00:00
|
|
|
dm = MNISTDataModule(batch_size=32)
|
|
|
|
|
|
|
|
model = LitClassifier()
|
|
|
|
|
|
|
|
trainer = pl.Trainer(max_epochs=2, ipus=8)
|
|
|
|
|
|
|
|
trainer.fit(model, datamodule=dm)
|
|
|
|
trainer.test(model, datamodule=dm)
|