2020-12-15 17:59:13 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-03-27 12:45:52 +00:00
|
|
|
"""Diagnose your system and show basic information
|
|
|
|
|
|
|
|
This server mainly to get detail info for better bug reporting.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
import os
|
2020-06-04 15:25:07 +00:00
|
|
|
import platform
|
2020-03-27 12:45:52 +00:00
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import torch
|
|
|
|
import tqdm
|
|
|
|
|
|
|
|
sys.path += [os.path.abspath('..'), os.path.abspath('.')]
|
|
|
|
import pytorch_lightning # noqa: E402
|
|
|
|
|
|
|
|
LEVEL_OFFSET = '\t'
|
|
|
|
KEY_PADDING = 20
|
|
|
|
|
|
|
|
|
|
|
|
def run_and_parse_first_match(run_lambda, command, regex):
|
|
|
|
"""Runs command using run_lambda, returns the first regex match if it exists"""
|
|
|
|
rc, out, _ = run_lambda(command)
|
|
|
|
if rc != 0:
|
|
|
|
return None
|
|
|
|
match = re.search(regex, out)
|
|
|
|
if match is None:
|
|
|
|
return None
|
|
|
|
return match.group(1)
|
|
|
|
|
|
|
|
|
|
|
|
def get_running_cuda_version(run_lambda):
|
|
|
|
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'V(.*)$')
|
|
|
|
|
|
|
|
|
|
|
|
def info_system():
|
|
|
|
return {
|
|
|
|
'OS': platform.system(),
|
|
|
|
'architecture': platform.architecture(),
|
|
|
|
'version': platform.version(),
|
|
|
|
'processor': platform.processor(),
|
|
|
|
'python': platform.python_version(),
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def info_cuda():
|
|
|
|
return {
|
2020-03-30 22:28:31 +00:00
|
|
|
'GPU': [torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())],
|
2020-03-27 12:45:52 +00:00
|
|
|
# 'nvidia_driver': get_nvidia_driver_version(run_lambda),
|
|
|
|
'available': torch.cuda.is_available(),
|
|
|
|
'version': torch.version.cuda,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def info_packages():
|
|
|
|
return {
|
|
|
|
'numpy': numpy.__version__,
|
|
|
|
"pyTorch_version": torch.__version__,
|
|
|
|
'pyTorch_debug': torch.version.debug,
|
|
|
|
'pytorch-lightning': pytorch_lightning.__version__,
|
|
|
|
'tqdm': tqdm.__version__,
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def nice_print(details, level=0):
|
|
|
|
lines = []
|
|
|
|
for k in sorted(details):
|
2020-04-20 21:36:26 +00:00
|
|
|
key = f'* {k}:' if level == 0 else f'- {k}:'
|
2020-03-27 12:45:52 +00:00
|
|
|
if isinstance(details[k], dict):
|
|
|
|
lines += [level * LEVEL_OFFSET + key]
|
|
|
|
lines += nice_print(details[k], level + 1)
|
|
|
|
elif isinstance(details[k], (set, list, tuple)):
|
|
|
|
lines += [level * LEVEL_OFFSET + key]
|
2020-04-20 21:36:26 +00:00
|
|
|
lines += [(level + 1) * LEVEL_OFFSET + '- ' + v for v in details[k]]
|
2020-03-27 12:45:52 +00:00
|
|
|
else:
|
|
|
|
template = '{:%is} {}' % KEY_PADDING
|
|
|
|
key_val = template.format(key, details[k])
|
|
|
|
lines += [(level * LEVEL_OFFSET) + key_val]
|
|
|
|
return lines
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
details = {
|
2020-04-20 21:36:26 +00:00
|
|
|
"System": info_system(),
|
|
|
|
'CUDA': info_cuda(),
|
|
|
|
'Packages': info_packages(),
|
2020-03-27 12:45:52 +00:00
|
|
|
}
|
|
|
|
lines = nice_print(details)
|
|
|
|
text = os.linesep.join(lines)
|
|
|
|
print(text)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|