lightning/tests/callbacks/test_device_stats_monitor.py

113 lines
3.6 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import DeviceStatsMonitor
from pytorch_lightning.callbacks.device_stats_monitor import _prefix_metric_keys
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.rank_zero import rank_zero_only
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
@RunIf(min_gpus=1)
def test_device_stats_gpu_from_torch(tmpdir):
2022-03-27 21:31:20 +00:00
"""Test GPU stats are logged using a logger."""
model = BoringModel()
device_stats = DeviceStatsMonitor()
class DebugLogger(CSVLogger):
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
fields = ["allocated_bytes.all.freed", "inactive_split.all.peak", "reserved_bytes.large_pool.peak"]
for f in fields:
assert any(f in h for h in metrics.keys())
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=7,
log_every_n_steps=1,
accelerator="gpu",
devices=1,
callbacks=[device_stats],
logger=DebugLogger(tmpdir),
enable_checkpointing=False,
enable_progress_bar=False,
)
trainer.fit(model)
@RunIf(tpu=True)
def test_device_stats_monitor_tpu(tmpdir):
"""Test TPU stats are logged using a logger."""
model = BoringModel()
device_stats = DeviceStatsMonitor()
class DebugLogger(CSVLogger):
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
fields = ["avg. free memory (MB)", "avg. peak memory (MB)"]
for f in fields:
assert any(f in h for h in metrics.keys())
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=1,
accelerator="tpu",
devices=8,
log_every_n_steps=1,
callbacks=[device_stats],
logger=DebugLogger(tmpdir),
enable_checkpointing=False,
enable_progress_bar=False,
)
trainer.fit(model)
def test_device_stats_monitor_no_logger(tmpdir):
"""Test DeviceStatsMonitor with no logger in Trainer."""
model = BoringModel()
device_stats = DeviceStatsMonitor()
trainer = Trainer(
default_root_dir=tmpdir,
callbacks=[device_stats],
max_epochs=1,
logger=False,
enable_checkpointing=False,
enable_progress_bar=False,
)
with pytest.raises(MisconfigurationException, match="Trainer that has no logger."):
trainer.fit(model)
def test_prefix_metric_keys(tmpdir):
"""Test that metric key names are converted correctly."""
metrics = {"1": 1.0, "2": 2.0, "3": 3.0}
prefix = "foo"
separator = "."
converted_metrics = _prefix_metric_keys(metrics, prefix, separator)
assert converted_metrics == {"foo.1": 1.0, "foo.2": 2.0, "foo.3": 3.0}