230 lines
8.3 KiB
Python
230 lines
8.3 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License
|
||
|
|
||
|
import os
|
||
|
import torch
|
||
|
import subprocess
|
||
|
import sys
|
||
|
from time import sleep
|
||
|
import numpy as np
|
||
|
from os.path import abspath
|
||
|
from pytorch_lightning.utilities import NATIVE_AMP_AVALAIBLE
|
||
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
||
|
from pytorch_lightning import _logger as log
|
||
|
from typing import Optional
|
||
|
|
||
|
try:
|
||
|
from hydra.utils import to_absolute_path, get_original_cwd
|
||
|
from hydra.core.hydra_config import HydraConfig
|
||
|
except ImportError:
|
||
|
HYDRA_AVAILABLE = False
|
||
|
else:
|
||
|
HYDRA_AVAILABLE = True
|
||
|
|
||
|
try:
|
||
|
from apex import amp
|
||
|
except ImportError:
|
||
|
APEX_AVAILABLE = False
|
||
|
else:
|
||
|
APEX_AVAILABLE = True
|
||
|
|
||
|
|
||
|
class DDPBackend(object):
|
||
|
|
||
|
def __init__(self, trainer):
|
||
|
self.trainer = trainer
|
||
|
self.task_idx = None
|
||
|
|
||
|
def slurm_setup(self):
|
||
|
self.task_idx = int(os.environ['SLURM_LOCALID'])
|
||
|
|
||
|
def torchelastic_setup(self):
|
||
|
self.task_idx = int(os.environ['LOCAL_RANK'])
|
||
|
|
||
|
def train(self, model):
|
||
|
self.ddp_train(process_idx=self.task_idx, mp_queue=None, model=model)
|
||
|
|
||
|
def spawn_ddp_children(self, model):
|
||
|
port = os.environ['MASTER_PORT']
|
||
|
|
||
|
master_address = '127.0.0.1' if 'MASTER_ADDR' not in os.environ else os.environ['MASTER_ADDR']
|
||
|
os.environ['MASTER_PORT'] = f'{port}'
|
||
|
os.environ['MASTER_ADDR'] = f'{master_address}'
|
||
|
|
||
|
# allow the user to pass the node rank
|
||
|
node_rank = '0'
|
||
|
if 'NODE_RANK' in os.environ:
|
||
|
node_rank = os.environ['NODE_RANK']
|
||
|
if 'GROUP_RANK' in os.environ:
|
||
|
node_rank = os.environ['GROUP_RANK']
|
||
|
|
||
|
os.environ['NODE_RANK'] = node_rank
|
||
|
os.environ['LOCAL_RANK'] = '0'
|
||
|
|
||
|
# when user is using hydra find the absolute path
|
||
|
path_lib = abspath if not HYDRA_AVAILABLE else to_absolute_path
|
||
|
|
||
|
# pull out the commands used to run the script and resolve the abs file path
|
||
|
command = sys.argv
|
||
|
try:
|
||
|
full_path = path_lib(command[0])
|
||
|
except Exception as e:
|
||
|
full_path = abspath(command[0])
|
||
|
|
||
|
command[0] = full_path
|
||
|
# use the same python interpreter and actually running
|
||
|
command = [sys.executable] + command
|
||
|
|
||
|
# since this script sets the visible devices we replace the gpus flag with a number
|
||
|
num_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',').__len__()
|
||
|
|
||
|
if '--gpus' in command:
|
||
|
gpu_flag_idx = command.index('--gpus')
|
||
|
command[gpu_flag_idx + 1] = f'{num_gpus}'
|
||
|
|
||
|
os.environ['WORLD_SIZE'] = f'{num_gpus * self.trainer.num_nodes}'
|
||
|
|
||
|
self.trainer.interactive_ddp_procs = []
|
||
|
for local_rank in range(1, self.trainer.num_processes):
|
||
|
env_copy = os.environ.copy()
|
||
|
env_copy['LOCAL_RANK'] = f'{local_rank}'
|
||
|
|
||
|
# start process
|
||
|
# if hydra is available and initialized, make sure to set the cwd correctly
|
||
|
cwd: Optional[str] = None
|
||
|
if HYDRA_AVAILABLE:
|
||
|
if HydraConfig.initialized():
|
||
|
cwd = get_original_cwd()
|
||
|
proc = subprocess.Popen(command, env=env_copy, cwd=cwd)
|
||
|
self.trainer.interactive_ddp_procs.append(proc)
|
||
|
|
||
|
# starting all processes at once can cause issues
|
||
|
# with dataloaders delay between 1-10 seconds
|
||
|
delay = np.random.uniform(1, 5, 1)[0]
|
||
|
sleep(delay)
|
||
|
|
||
|
local_rank = 0
|
||
|
results = self.ddp_train(local_rank, mp_queue=None, model=model, is_master=True)
|
||
|
del os.environ['WORLD_SIZE']
|
||
|
|
||
|
return results
|
||
|
|
||
|
def ddp_train(self, process_idx, mp_queue, model, is_master=False, proc_offset=0):
|
||
|
"""
|
||
|
Entry point for ddp
|
||
|
|
||
|
Args:
|
||
|
process_idx:
|
||
|
mp_queue: multiprocessing queue
|
||
|
model:
|
||
|
is_master:
|
||
|
proc_offset:
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
"""
|
||
|
# offset the process id if requested
|
||
|
process_idx = process_idx + proc_offset
|
||
|
|
||
|
# show progressbar only on progress_rank 0
|
||
|
if (self.trainer.node_rank != 0 or process_idx != 0) and self.trainer.progress_bar_callback is not None:
|
||
|
self.trainer.progress_bar_callback.disable()
|
||
|
|
||
|
# determine which process we are and world size
|
||
|
self.trainer.local_rank = process_idx
|
||
|
self.trainer.global_rank = self.trainer.node_rank * self.trainer.num_processes + process_idx
|
||
|
self.trainer.world_size = self.trainer.num_nodes * self.trainer.num_processes
|
||
|
|
||
|
# set warning rank
|
||
|
rank_zero_only.rank = self.trainer.global_rank
|
||
|
|
||
|
# set up server using proc 0's ip address
|
||
|
# try to init for 20 times at max in case ports are taken
|
||
|
# where to store ip_table
|
||
|
model.trainer = self.trainer
|
||
|
model.init_ddp_connection(
|
||
|
self.trainer.global_rank,
|
||
|
self.trainer.world_size,
|
||
|
self.trainer.is_slurm_managing_tasks
|
||
|
)
|
||
|
|
||
|
# call setup after the ddp process has connected
|
||
|
self.trainer.call_setup_hook(model)
|
||
|
|
||
|
# on world_size=0 let everyone know training is starting
|
||
|
if self.trainer.is_global_zero:
|
||
|
log.info('-' * 100)
|
||
|
log.info(f'distributed_backend={self.trainer.distributed_backend}')
|
||
|
log.info(f'All DDP processes registered. Starting ddp with {self.trainer.world_size} processes')
|
||
|
log.info('-' * 100)
|
||
|
|
||
|
# CHOOSE OPTIMIZER
|
||
|
# allow for lr schedulers as well
|
||
|
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
|
||
|
self.trainer.optimizers = optimizers
|
||
|
self.trainer.lr_schedulers = lr_schedulers
|
||
|
self.trainer.optimizer_frequencies = optimizer_frequencies
|
||
|
|
||
|
# MODEL
|
||
|
# copy model to each gpu
|
||
|
if self.trainer.on_gpu:
|
||
|
gpu_idx = process_idx
|
||
|
|
||
|
# when using ddp, the master process (proc 0) continues running as the main one
|
||
|
# this means that the local rank will always be 0
|
||
|
# (even if cuda visible devices has other visible gpus)
|
||
|
# this means that the master process needs to pull the 0th visible index as the device number
|
||
|
if is_master:
|
||
|
available_gpus = os.environ['CUDA_VISIBLE_DEVICES'].split(',')
|
||
|
gpu_idx = int(available_gpus[self.trainer.local_rank])
|
||
|
|
||
|
self.trainer.root_gpu = gpu_idx
|
||
|
torch.cuda.set_device(self.trainer.root_gpu)
|
||
|
model.cuda(self.trainer.root_gpu)
|
||
|
|
||
|
# set model properties before going into wrapper
|
||
|
self.trainer.copy_trainer_model_properties(model)
|
||
|
|
||
|
# AMP
|
||
|
# run through amp wrapper before going to distributed DP
|
||
|
# TODO: remove with dropping NVIDIA AMP support
|
||
|
if self.trainer.use_amp and not NATIVE_AMP_AVALAIBLE:
|
||
|
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
|
||
|
self.trainer.optimizers = optimizers
|
||
|
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
|
||
|
|
||
|
# DDP2 uses all GPUs on the machine
|
||
|
if self.trainer.distributed_backend == 'ddp' or self.trainer.distributed_backend == 'ddp_spawn':
|
||
|
device_ids = [self.trainer.root_gpu]
|
||
|
else: # includes ddp_cpu
|
||
|
device_ids = None
|
||
|
|
||
|
# allow user to configure ddp
|
||
|
model = model.configure_ddp(model, device_ids)
|
||
|
|
||
|
# continue training routine
|
||
|
results = self.trainer.run_pretrain_routine(model)
|
||
|
|
||
|
# get original model
|
||
|
model = self.trainer.get_model()
|
||
|
|
||
|
# persist info in ddp_spawn
|
||
|
self.trainer.transfer_distrib_spawn_state_on_fit_end(model, mp_queue, results)
|
||
|
|
||
|
# clean up memory
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
if self.trainer.global_rank == 0 and self.trainer.distributed_backend not in ['ddp_spawn', 'ddp_cpu']:
|
||
|
return results
|