lightning/tests/trainer/properties/log_dir.py

160 lines
4.4 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import LoggerCollection, TensorBoardLogger
from tests.helpers.boring_model import BoringModel
class TestModel(BoringModel):
2021-02-06 15:06:17 +00:00
def __init__(self, expected_log_dir):
super().__init__()
self.expected_log_dir = expected_log_dir
def training_step(self, *args, **kwargs):
assert self.trainer.log_dir == self.expected_log_dir
return super().training_step(*args, **kwargs)
def test_logdir(tmpdir):
"""
Tests that the path is correct when checkpoint and loggers are used
"""
expected = os.path.join(tmpdir, 'lightning_logs', 'version_0')
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_no_checkpoint_cb(tmpdir):
"""
Tests that the path is correct with no checkpoint
"""
expected = os.path.join(tmpdir, 'lightning_logs', 'version_0')
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
2021-02-06 15:06:17 +00:00
checkpoint_callback=False,
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_no_logger(tmpdir):
"""
Tests that the path is correct even when there is no logger
"""
expected = os.path.join(tmpdir)
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
logger=False,
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_no_logger_no_checkpoint(tmpdir):
"""
Tests that the path is correct even when there is no logger
"""
expected = os.path.join(tmpdir)
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
logger=False,
2021-02-06 15:06:17 +00:00
checkpoint_callback=False,
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_custom_callback(tmpdir):
"""
Tests that the path is correct even when there is a custom callback
"""
expected = os.path.join(tmpdir, 'lightning_logs', 'version_0')
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
callbacks=[ModelCheckpoint(dirpath=os.path.join(tmpdir, 'ckpts'))],
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_custom_logger(tmpdir):
"""
Tests that the path is correct even when there is a custom logger
"""
expected = os.path.join(tmpdir, 'custom_logs', 'version_0')
model = TestModel(expected)
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=2,
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
logger=TensorBoardLogger(save_dir=tmpdir, name='custom_logs')
)
assert trainer.log_dir == expected
trainer.fit(model)
assert trainer.log_dir == expected
def test_logdir_logger_collection(tmpdir):
"""Tests that the logdir equals the default_root_dir when the logger is a LoggerCollection"""
default_root_dir = tmpdir / "default_root_dir"
save_dir = tmpdir / "save_dir"
model = TestModel(default_root_dir)
trainer = Trainer(
default_root_dir=default_root_dir,
max_steps=2,
logger=[TensorBoardLogger(save_dir=save_dir, name='custom_logs')]
)
assert isinstance(trainer.logger, LoggerCollection)
assert trainer.log_dir == default_root_dir
trainer.fit(model)
assert trainer.log_dir == default_root_dir