190 lines
4.8 KiB
Python
190 lines
4.8 KiB
Python
|
import torch.nn.functional as F
|
||
|
import torch
|
||
|
from pytorch_lightning.metrics.metric import Metric
|
||
|
|
||
|
__all__ = ['MSE', 'RMSE', 'MAE', 'RMSLE']
|
||
|
|
||
|
|
||
|
class MSE(Metric):
|
||
|
"""
|
||
|
Computes the mean squared loss.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
reduction: str = 'elementwise_mean',
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
||
|
Available reduction methods:
|
||
|
- elementwise_mean: takes the mean
|
||
|
- none: pass array
|
||
|
- sum: add elements
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
||
|
>>> target = torch.tensor([0., 1, 2, 2])
|
||
|
>>> metric = MSE()
|
||
|
>>> metric(pred, target)
|
||
|
tensor(0.2500)
|
||
|
|
||
|
"""
|
||
|
super().__init__(name='mse')
|
||
|
if reduction == 'elementwise_mean':
|
||
|
reduction = 'mean'
|
||
|
self.reduction = reduction
|
||
|
|
||
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Actual metric computation
|
||
|
|
||
|
Args:
|
||
|
pred: predicted labels
|
||
|
target: ground truth labels
|
||
|
|
||
|
Return:
|
||
|
A Tensor with the mse loss.
|
||
|
"""
|
||
|
return F.mse_loss(pred, target, self.reduction)
|
||
|
|
||
|
|
||
|
class RMSE(Metric):
|
||
|
"""
|
||
|
Computes the root mean squared loss.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
reduction: str = 'elementwise_mean',
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
||
|
Available reduction methods:
|
||
|
- elementwise_mean: takes the mean
|
||
|
- none: pass array
|
||
|
- sum: add elements
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
||
|
>>> target = torch.tensor([0., 1, 2, 2])
|
||
|
>>> metric = RMSE()
|
||
|
>>> metric(pred, target)
|
||
|
tensor(0.5000)
|
||
|
|
||
|
"""
|
||
|
super().__init__(name='rmse')
|
||
|
if reduction == 'elementwise_mean':
|
||
|
reduction = 'mean'
|
||
|
self.reduction = reduction
|
||
|
|
||
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Actual metric computation
|
||
|
|
||
|
Args:
|
||
|
pred: predicted labels
|
||
|
target: ground truth labels
|
||
|
|
||
|
Return:
|
||
|
A Tensor with the rmse loss.
|
||
|
"""
|
||
|
return torch.sqrt(F.mse_loss(pred, target, self.reduction))
|
||
|
|
||
|
|
||
|
class MAE(Metric):
|
||
|
"""
|
||
|
Computes the root mean absolute loss or L1-loss.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
reduction: str = 'elementwise_mean',
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
||
|
Available reduction methods:
|
||
|
- elementwise_mean: takes the mean
|
||
|
- none: pass array
|
||
|
- sum: add elements
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
||
|
>>> target = torch.tensor([0., 1, 2, 2])
|
||
|
>>> metric = MAE()
|
||
|
>>> metric(pred, target)
|
||
|
tensor(0.2500)
|
||
|
|
||
|
"""
|
||
|
super().__init__(name='mae')
|
||
|
if reduction == 'elementwise_mean':
|
||
|
reduction = 'mean'
|
||
|
self.reduction = reduction
|
||
|
|
||
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Actual metric computation
|
||
|
|
||
|
Args:
|
||
|
pred: predicted labels
|
||
|
target: ground truth labels
|
||
|
|
||
|
Return:
|
||
|
A Tensor with the mae loss.
|
||
|
"""
|
||
|
return F.l1_loss(pred, target, self.reduction)
|
||
|
|
||
|
|
||
|
class RMSLE(Metric):
|
||
|
"""
|
||
|
Computes the root mean squared log loss.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
reduction: str = 'elementwise_mean',
|
||
|
):
|
||
|
"""
|
||
|
Args:
|
||
|
reduction: a method for reducing mse over labels (default: takes the mean)
|
||
|
Available reduction methods:
|
||
|
- elementwise_mean: takes the mean
|
||
|
- none: pass array
|
||
|
- sum: add elements
|
||
|
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> pred = torch.tensor([0., 1, 2, 3])
|
||
|
>>> target = torch.tensor([0., 1, 2, 2])
|
||
|
>>> metric = RMSLE()
|
||
|
>>> metric(pred, target)
|
||
|
tensor(0.0207)
|
||
|
|
||
|
"""
|
||
|
super().__init__(name='rmsle')
|
||
|
if reduction == 'elementwise_mean':
|
||
|
reduction = 'mean'
|
||
|
self.reduction = reduction
|
||
|
|
||
|
def forward(self, pred: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Actual metric computation
|
||
|
|
||
|
Args:
|
||
|
pred: predicted labels
|
||
|
target: ground truth labels
|
||
|
|
||
|
Return:
|
||
|
A Tensor with the rmsle loss.
|
||
|
"""
|
||
|
return F.mse_loss(torch.log(pred + 1), torch.log(target + 1), self.reduction)
|