2021-02-16 21:52:42 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2021-07-30 13:53:40 +00:00
|
|
|
import math
|
|
|
|
|
2021-02-16 21:52:42 +00:00
|
|
|
import torch
|
2021-07-30 13:53:40 +00:00
|
|
|
import torch.nn as nn
|
2021-02-16 21:52:42 +00:00
|
|
|
|
2021-07-30 13:53:40 +00:00
|
|
|
from pytorch_lightning.utilities.memory import get_model_size_mb, recursive_detach
|
|
|
|
from tests.helpers import BoringModel
|
2021-02-16 21:52:42 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_recursive_detach():
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
x = {"foo": torch.tensor(0, device=device), "bar": {"baz": torch.tensor(1.0, device=device, requires_grad=True)}}
|
|
|
|
y = recursive_detach(x, to_cpu=True)
|
|
|
|
|
|
|
|
assert x["foo"].device.type == device
|
|
|
|
assert x["bar"]["baz"].device.type == device
|
|
|
|
assert x["bar"]["baz"].requires_grad
|
|
|
|
|
|
|
|
assert y["foo"].device.type == "cpu"
|
|
|
|
assert y["bar"]["baz"].device.type == "cpu"
|
|
|
|
assert not y["bar"]["baz"].requires_grad
|
2021-07-30 13:53:40 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_get_model_size_mb():
|
|
|
|
model = BoringModel()
|
|
|
|
|
|
|
|
size_bytes = get_model_size_mb(model)
|
|
|
|
|
|
|
|
# Size will be python version dependent.
|
|
|
|
assert math.isclose(size_bytes, 0.001319, rel_tol=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
def test_get_sparse_model_size_mb():
|
|
|
|
class BoringSparseModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.layer = nn.Parameter(torch.ones(32).to_sparse())
|
|
|
|
|
|
|
|
model = BoringSparseModel()
|
|
|
|
size_bytes = get_model_size_mb(model)
|
|
|
|
|
|
|
|
assert math.isclose(size_bytes, 0.001511, rel_tol=0.1)
|