lightning/tests/utilities/test_deepspeed_collate_chec...

58 lines
2.3 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.strategies import DeepSpeedStrategy
from pytorch_lightning.utilities.deepspeed import convert_zero_checkpoint_to_fp32_state_dict
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
2022-03-27 21:31:20 +00:00
@RunIf(min_gpus=2, standalone=True, deepspeed=True)
def test_deepspeed_collate_checkpoint(tmpdir):
"""Test to ensure that with DeepSpeed Stage 3 we can collate the sharded checkpoints into a single file."""
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
strategy=DeepSpeedStrategy(stage=3),
accelerator="gpu",
devices=2,
fast_dev_run=True,
precision=16,
)
trainer.fit(model)
checkpoint_path = os.path.join(tmpdir, "model.pt")
checkpoint_path = trainer.strategy.broadcast(checkpoint_path)
trainer.save_checkpoint(checkpoint_path)
trainer.strategy.barrier()
if trainer.is_global_zero:
# ensure function call works
output_path = os.path.join(tmpdir, "single_model.pt")
convert_zero_checkpoint_to_fp32_state_dict(checkpoint_path, output_path)
_assert_checkpoint_equal(model, output_path)
def _assert_checkpoint_equal(model, output_path):
assert os.path.exists(output_path)
single_output = torch.load(output_path)
state_dict = model.state_dict()
for orig_param, saved_model_param in zip(state_dict.values(), single_output["state_dict"].values()):
if model.dtype == torch.half:
# moved model to float32 for comparison with single fp32 saved weights
saved_model_param = saved_model_param.half()
assert torch.equal(orig_param.cpu(), saved_model_param)