lightning/tests/tests_pytorch/callbacks/test_model_summary.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

67 lines
2.5 KiB
Python
Raw Normal View History

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import ModelSummary
from lightning.pytorch.demos.boring_classes import BoringModel
def test_model_summary_callback_present_trainer():
trainer = Trainer()
assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks)
trainer = Trainer(callbacks=ModelSummary())
assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks)
def test_model_summary_callback_with_enable_model_summary_false():
trainer = Trainer(enable_model_summary=False)
assert not any(isinstance(cb, ModelSummary) for cb in trainer.callbacks)
def test_model_summary_callback_with_enable_model_summary_true():
trainer = Trainer(enable_model_summary=True)
assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks)
# Default value of max_depth is set as 1, when enable_model_summary is True
# and ModelSummary is not passed in callbacks list
model_summary_callback = list(filter(lambda cb: isinstance(cb, ModelSummary), trainer.callbacks))[0]
assert model_summary_callback._max_depth == 1
def test_custom_model_summary_callback_summarize(tmpdir):
class CustomModelSummary(ModelSummary):
@staticmethod
def summarize(
summary_data: List[List[Union[str, List[str]]]],
total_parameters: int,
trainable_parameters: int,
model_size: float,
) -> None:
assert summary_data[1][0] == "Name"
assert summary_data[1][1][0] == "layer"
assert summary_data[2][0] == "Type"
assert summary_data[2][1][0] == "Linear"
assert summary_data[3][0] == "Params"
assert total_parameters == 66
assert trainable_parameters == 66
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, callbacks=CustomModelSummary(), max_steps=1)
trainer.fit(model)