lightning/pytorch_lightning/metrics/functional/f_beta.py

152 lines
5.8 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
from torchmetrics.utilities import class_reduce
from torchmetrics.utilities.checks import _input_format_classification_one_hot
def _fbeta_update(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
threshold: float = 0.5,
multilabel: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
preds, target = _input_format_classification_one_hot(num_classes, preds, target, threshold, multilabel)
true_positives = torch.sum(preds * target, dim=1)
predicted_positives = torch.sum(preds, dim=1)
actual_positives = torch.sum(target, dim=1)
return true_positives, predicted_positives, actual_positives
def _fbeta_compute(
true_positives: torch.Tensor,
predicted_positives: torch.Tensor,
actual_positives: torch.Tensor,
beta: float = 1.0,
average: str = "micro"
) -> torch.Tensor:
if average == "micro":
precision = true_positives.sum().float() / predicted_positives.sum()
recall = true_positives.sum().float() / actual_positives.sum()
else:
precision = true_positives.float() / predicted_positives
recall = true_positives.float() / actual_positives
num = (1 + beta**2) * precision * recall
denom = beta**2 * precision + recall
return class_reduce(num, denom, weights=actual_positives, class_reduction=average)
def fbeta(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
beta: float = 1.0,
threshold: float = 0.5,
average: str = "micro",
multilabel: bool = False
) -> torch.Tensor:
"""
Computes f_beta metric.
Works with binary, multiclass, and multilabel data.
2021-02-11 14:32:12 +00:00
Accepts probabilities from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.
2021-02-11 14:32:12 +00:00
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument
to convert into integer labels. This is the case for binary and multi-label probabilities.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
2021-02-11 14:32:12 +00:00
preds: predictions from model (probabilities, or labels)
target: ground truth labels
num_classes: Number of classes in the dataset.
beta: Beta coefficient in the F measure.
threshold:
2021-02-11 14:32:12 +00:00
Threshold value for binary or multi-label probabilities. default: 0.5
average:
- ``'micro'`` computes metric globally
- ``'macro'`` computes metric for each class and uniformly averages them
- ``'weighted'`` computes metric for each class and does a weighted-average,
where each class is weighted by their support (accounts for class imbalance)
2021-02-11 14:32:12 +00:00
- ``'none'`` or ``None`` computes and returns the metric per class
multilabel: If predictions are from multilabel classification.
Example:
>>> from pytorch_lightning.metrics.functional import fbeta
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> fbeta(preds, target, num_classes=3, beta=0.5)
tensor(0.3333)
"""
true_positives, predicted_positives, actual_positives = _fbeta_update(
preds, target, num_classes, threshold, multilabel
)
return _fbeta_compute(true_positives, predicted_positives, actual_positives, beta, average)
def f1(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
threshold: float = 0.5,
average: str = "micro",
multilabel: bool = False
) -> torch.Tensor:
"""
Computes F1 metric. F1 metrics correspond to a equally weighted average of the
precision and recall scores.
Works with binary, multiclass, and multilabel data.
2021-02-11 14:32:12 +00:00
Accepts probabilities from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.
2021-02-11 14:32:12 +00:00
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument
to convert into integer labels. This is the case for binary and multi-label probabilities.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
2021-02-11 14:32:12 +00:00
preds: predictions from model (probabilities, or labels)
target: ground truth labels
num_classes: Number of classes in the dataset.
threshold:
2021-02-11 14:32:12 +00:00
Threshold value for binary or multi-label probabilities. default: 0.5
average:
- ``'micro'`` computes metric globally
- ``'macro'`` computes metric for each class and uniformly averages them
- ``'weighted'`` computes metric for each class and does a weighted-average,
where each class is weighted by their support (accounts for class imbalance)
2021-02-11 14:32:12 +00:00
- ``'none'`` or ``None`` computes and returns the metric per class
multilabel: If predictions are from multilabel classification.
Example:
>>> from pytorch_lightning.metrics.functional import f1
>>> target = torch.tensor([0, 1, 2, 0, 1, 2])
>>> preds = torch.tensor([0, 2, 1, 0, 0, 1])
>>> f1(preds, target, num_classes=3)
tensor(0.3333)
"""
return fbeta(preds, target, num_classes, 1.0, threshold, average, multilabel)