lightning/docs/source-pytorch/fabric/api/fabric_args.rst

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

218 lines
5.5 KiB
ReStructuredText
Raw Normal View History

:orphan:
################
Fabric Arguments
################
accelerator
===========
Choose one of ``"cpu"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
.. code-block:: python
# CPU accelerator
fabric = Fabric(accelerator="cpu")
# Running with GPU Accelerator using 2 GPUs
fabric = Fabric(devices=2, accelerator="gpu")
# Running with TPU Accelerator using 8 TPU cores
fabric = Fabric(devices=8, accelerator="tpu")
# Running with GPU Accelerator using the DistributedDataParallel strategy
fabric = Fabric(devices=4, accelerator="gpu", strategy="ddp")
The ``"auto"`` option recognizes the machine you are on and selects the available accelerator.
.. code-block:: python
# If your machine has GPUs, it will use the GPU Accelerator
fabric = Fabric(devices=2, accelerator="auto")
See also: :doc:`../fundamentals/accelerators`
strategy
========
Choose a training strategy: ``"dp"``, ``"ddp"``, ``"ddp_spawn"``, ``"xla"``, ``"deepspeed"``, ``"fsdp"````.
.. code-block:: python
# Running with the DistributedDataParallel strategy on 4 GPUs
fabric = Fabric(strategy="ddp", accelerator="gpu", devices=4)
# Running with the DDP Spawn strategy using 4 CPU processes
fabric = Fabric(strategy="ddp_spawn", accelerator="cpu", devices=4)
Additionally, you can pass in your custom strategy by configuring additional parameters.
.. code-block:: python
from lightning.fabric.strategies import DeepSpeedStrategy
fabric = Fabric(strategy=DeepSpeedStrategy(stage=2), accelerator="gpu", devices=2)
See also: :doc:`../fundamentals/launch`
devices
=======
Configure the devices to run on. Can be of type:
- int: the number of devices (e.g., GPUs) to train on
- list of int: which device index (e.g., GPU ID) to train on (0-indexed)
- str: a string representation of one of the above
.. code-block:: python
# default used by Fabric, i.e., use the CPU
fabric = Fabric(devices=None)
# equivalent
fabric = Fabric(devices=0)
# int: run on two GPUs
fabric = Fabric(devices=2, accelerator="gpu")
# list: run on GPUs 1, 4 (by bus ordering)
fabric = Fabric(devices=[1, 4], accelerator="gpu")
fabric = Fabric(devices="1, 4", accelerator="gpu") # equivalent
# -1: run on all GPUs
fabric = Fabric(devices=-1, accelerator="gpu")
fabric = Fabric(devices="-1", accelerator="gpu") # equivalent
See also: :doc:`../fundamentals/launch`
num_nodes
=========
The number of cluster nodes for distributed operation.
.. code-block:: python
# Default used by Fabric
fabric = Fabric(num_nodes=1)
# Run on 8 nodes
fabric = Fabric(num_nodes=8)
Learn more about :ref:`distributed multi-node training on clusters <Fabric Cluster>`.
precision
=========
Fabric supports double precision (64), full precision (32), or half-precision (16) operation (including `bfloat16 <https://pytorch.org/docs/1.10.0/generated/torch.Tensor.bfloat16.html>`_).
Half precision, or mixed precision, combines 32 and 16-bit floating points to reduce the memory footprint during model training.
This can result in improved performance, achieving significant speedups on modern GPUs.
.. code-block:: python
# Default used by the Fabric
fabric = Fabric(precision=32, devices=1)
# 16-bit (mixed) precision
fabric = Fabric(precision=16, devices=1)
# 16-bit bfloat precision
fabric = Fabric(precision="bf16", devices=1)
# 64-bit (double) precision
fabric = Fabric(precision=64, devices=1)
See also: :doc:`../fundamentals/precision`
plugins
=======
:ref:`Plugins` allow you to connect arbitrary backends, precision libraries, clusters, etc. For example:
To define your own behavior, subclass the relevant class and pass it in. Here's an example linking up your own
:class:`~lightning.fabric.plugins.environments.ClusterEnvironment`.
.. code-block:: python
from lightning.fabric.plugins.environments import ClusterEnvironment
class MyCluster(ClusterEnvironment):
@property
def main_address(self):
return your_main_address
@property
def main_port(self):
return your_main_port
def world_size(self):
return the_world_size
fabric = Fabric(plugins=[MyCluster()], ...)
callbacks
=========
A callback class is a collection of methods that the training loop can call at a specific time, for example, at the end of an epoch.
Add callbacks to Fabric to inject logic into your training loop from an external callback class.
.. code-block:: python
class MyCallback:
def on_train_epoch_end(self, results):
...
You can then register this callback or multiple ones directly in Fabric:
.. code-block:: python
fabric = Fabric(callbacks=[MyCallback()])
Then, in your training loop, you can call a hook by its name. Any callback objects that have this hook will execute it:
.. code-block:: python
# Call any hook by name
fabric.call("on_train_epoch_end", results={...})
See also: :doc:`../guide/callbacks`
loggers
=======
Attach one or several loggers/experiment trackers to Fabric for convenient metrics logging.
.. code-block:: python
# Default used by Fabric; no loggers are active
fabric = Fabric(loggers=[])
# Log to a single logger
fabric = Fabric(loggers=TensorBoardLogger(...))
# Or multiple instances
fabric = Fabric(loggers=[logger1, logger2, ...])
Anywhere in your training loop, you can log metrics to all loggers at once:
.. code-block:: python
fabric.log("loss", loss)
fabric.log_dict({"loss": loss, "accuracy": acc})
See also: :doc:`../guide/logging`