2020-11-24 18:05:00 +00:00
|
|
|
import os
|
2021-03-04 19:45:58 +00:00
|
|
|
from unittest import mock
|
2021-11-29 09:58:23 +00:00
|
|
|
from unittest.mock import Mock
|
2020-11-24 18:05:00 +00:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
2021-09-02 02:23:59 +00:00
|
|
|
from pytorch_lightning import LightningModule, Trainer
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
from pytorch_lightning.plugins import DDPShardedPlugin, DDPSpawnShardedPlugin
|
2021-09-02 02:23:59 +00:00
|
|
|
from pytorch_lightning.trainer.states import TrainerFn
|
|
|
|
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE
|
2021-02-08 10:52:02 +00:00
|
|
|
from tests.helpers.boring_model import BoringModel
|
2021-03-02 09:36:01 +00:00
|
|
|
from tests.helpers.runif import RunIf
|
2020-11-24 18:05:00 +00:00
|
|
|
|
2021-09-02 02:23:59 +00:00
|
|
|
if _FAIRSCALE_AVAILABLE:
|
|
|
|
from fairscale.nn.data_parallel.sharded_ddp import ShardedDataParallel
|
|
|
|
|
2020-11-24 18:05:00 +00:00
|
|
|
|
2021-03-04 19:45:58 +00:00
|
|
|
@pytest.mark.parametrize("clip_val", [0, 10])
|
2021-09-29 13:34:26 +00:00
|
|
|
@RunIf(min_gpus=1, skip_windows=True, fairscale=True)
|
2021-07-26 11:37:35 +00:00
|
|
|
@mock.patch("fairscale.optim.oss.OSS.clip_grad_norm")
|
2021-03-04 19:45:58 +00:00
|
|
|
def test_ddp_sharded_precision_16_clip_gradients(mock_oss_clip_grad_norm, clip_val, tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Ensure that clip gradients is only called if the value is greater than 0."""
|
2021-03-04 19:45:58 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded", gpus=1, precision=16, fast_dev_run=True, gradient_clip_val=clip_val)
|
2021-03-04 19:45:58 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
if clip_val > 0:
|
|
|
|
mock_oss_clip_grad_norm.assert_called()
|
|
|
|
else:
|
|
|
|
mock_oss_clip_grad_norm.assert_not_called()
|
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(fairscale=True)
|
2021-12-03 16:37:40 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"strategy,expected", [("ddp_sharded", DDPShardedPlugin), ("ddp_sharded_spawn", DDPSpawnShardedPlugin)]
|
|
|
|
)
|
|
|
|
def test_sharded_ddp_choice(tmpdir, strategy, expected):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that plugin is correctly chosen."""
|
2021-12-03 16:37:40 +00:00
|
|
|
trainer = Trainer(fast_dev_run=True, strategy=strategy)
|
2021-12-16 04:41:34 +00:00
|
|
|
assert isinstance(trainer.training_type_plugin, expected)
|
2020-11-24 18:05:00 +00:00
|
|
|
|
|
|
|
|
2021-09-29 13:34:26 +00:00
|
|
|
@RunIf(min_gpus=1, fairscale=True)
|
2021-12-03 16:37:40 +00:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"strategy,expected", [("ddp_sharded", DDPShardedPlugin), ("ddp_sharded_spawn", DDPSpawnShardedPlugin)]
|
|
|
|
)
|
|
|
|
def test_ddp_choice_sharded_amp(tmpdir, strategy, expected):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that plugin native amp plugin is correctly chosen when using sharded."""
|
2021-12-03 16:37:40 +00:00
|
|
|
trainer = Trainer(fast_dev_run=True, gpus=1, precision=16, strategy=strategy)
|
2021-12-16 04:41:34 +00:00
|
|
|
assert isinstance(trainer.training_type_plugin, expected)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
2020-11-24 21:12:18 +00:00
|
|
|
def test_ddp_sharded_plugin_checkpoint_cpu(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that checkpoint is saved correctly."""
|
2020-11-24 21:12:18 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
|
2020-11-24 21:12:18 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-24 21:12:18 +00:00
|
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
|
|
|
|
# Assert model parameters are identical after loading
|
|
|
|
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
assert torch.equal(ddp_param.to("cpu"), shard_param)
|
2020-11-24 21:12:18 +00:00
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
2020-11-24 21:12:18 +00:00
|
|
|
def test_ddp_sharded_plugin_checkpoint_multi_gpu(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that checkpoint is saved correctly when using multiple GPUs."""
|
2020-11-24 21:12:18 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(gpus=2, strategy="ddp_sharded_spawn", fast_dev_run=True)
|
2020-11-24 21:12:18 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-24 21:12:18 +00:00
|
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
|
|
|
|
# Assert model parameters are identical after loading
|
|
|
|
for ddp_param, shard_param in zip(model.parameters(), saved_model.parameters()):
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
assert torch.equal(ddp_param.to("cpu"), shard_param)
|
2020-11-24 21:12:18 +00:00
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
2020-11-25 15:38:54 +00:00
|
|
|
def test_ddp_sharded_plugin_finetune(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that we can save and restart training (simulate fine-tuning)"""
|
2020-11-25 15:38:54 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(gpus=2, strategy="ddp_sharded_spawn", fast_dev_run=True)
|
2020-11-25 15:38:54 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-25 15:38:54 +00:00
|
|
|
saved_model = BoringModel.load_from_checkpoint(checkpoint_path)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
trainer = Trainer(fast_dev_run=True)
|
2020-11-25 15:38:54 +00:00
|
|
|
trainer.fit(saved_model)
|
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
2021-10-25 19:05:31 +00:00
|
|
|
def test_ddp_sharded_plugin_fit_ckpt_path(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that resuming from checkpoint works."""
|
2020-11-25 12:55:02 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
model = BoringModel()
|
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer.fit(model, ckpt_path=checkpoint_path)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@pytest.mark.skip(reason="Not a critical test, skip till drone CI performance improves.") # todo
|
2020-11-25 12:55:02 +00:00
|
|
|
@pytest.mark.skip(reason="Currently unsupported restarting training on different number of devices.")
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(min_gpus=2, skip_windows=True, fairscale=True)
|
2021-10-25 19:05:31 +00:00
|
|
|
def test_ddp_sharded_plugin_fit_ckpt_path_downsize_gpus(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that resuming from checkpoint works when downsizing number of GPUS."""
|
2020-11-25 12:55:02 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", fast_dev_run=True, gpus=2)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
model = BoringModel()
|
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", fast_dev_run=True, gpus=1)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer.fit(model, ckpt_path=checkpoint_path)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
|
2021-03-02 19:45:13 +00:00
|
|
|
@RunIf(min_gpus=1, skip_windows=True, fairscale=True)
|
2021-10-25 19:05:31 +00:00
|
|
|
def test_ddp_sharded_plugin_fit_ckpt_path_gpu_to_cpu(tmpdir):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure that resuming from checkpoint works when going from GPUs- > CPU."""
|
2020-11-25 12:55:02 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", gpus=1, fast_dev_run=True)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2021-07-26 11:37:35 +00:00
|
|
|
checkpoint_path = os.path.join(tmpdir, "model.pt")
|
2020-11-25 23:23:08 +00:00
|
|
|
trainer.save_checkpoint(checkpoint_path)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
|
|
|
model = BoringModel()
|
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", num_processes=2, fast_dev_run=True)
|
2020-11-25 12:55:02 +00:00
|
|
|
|
2021-10-25 19:05:31 +00:00
|
|
|
trainer.fit(model, ckpt_path=checkpoint_path)
|
2020-11-26 18:49:06 +00:00
|
|
|
|
|
|
|
|
2021-11-26 17:13:14 +00:00
|
|
|
@RunIf(skip_windows=True, standalone=True, fairscale=True)
|
2021-07-26 11:37:35 +00:00
|
|
|
@pytest.mark.parametrize("trainer_kwargs", (dict(num_processes=2), pytest.param(dict(gpus=2), marks=RunIf(min_gpus=2))))
|
2021-03-11 02:46:37 +00:00
|
|
|
def test_ddp_sharded_plugin_test_multigpu(tmpdir, trainer_kwargs):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Test to ensure we can use validate and test without fit."""
|
2020-11-26 18:49:06 +00:00
|
|
|
model = BoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(strategy="ddp_sharded_spawn", fast_dev_run=True, **trainer_kwargs)
|
2020-11-26 18:49:06 +00:00
|
|
|
|
2021-03-11 02:46:37 +00:00
|
|
|
trainer.validate(model)
|
2020-11-26 18:49:06 +00:00
|
|
|
trainer.test(model)
|
2021-04-10 16:14:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ManualBoringModel(BoringModel):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.automatic_optimization = False
|
|
|
|
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
opt = self.optimizers()
|
|
|
|
opt.zero_grad()
|
|
|
|
output = self(batch)
|
|
|
|
loss = self.loss(batch, output)
|
|
|
|
self.manual_backward(loss)
|
|
|
|
opt.step()
|
|
|
|
return {"loss": loss}
|
|
|
|
|
|
|
|
|
2021-11-26 17:13:14 +00:00
|
|
|
@RunIf(skip_windows=True, standalone=True, fairscale=True, min_gpus=2)
|
2021-06-16 17:39:03 +00:00
|
|
|
def test_ddp_sharded_plugin_manual_optimization_spawn(tmpdir):
|
|
|
|
# todo (sean): this test has been split out as running both tests using parametrize causes "Address in use"
|
2021-04-10 16:14:37 +00:00
|
|
|
model = ManualBoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(default_root_dir=tmpdir, strategy="ddp_sharded_spawn", fast_dev_run=2, gpus=2)
|
2021-06-16 17:39:03 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
2021-11-26 17:13:14 +00:00
|
|
|
@RunIf(skip_windows=True, standalone=True, fairscale=True, min_gpus=2)
|
2021-06-16 17:39:03 +00:00
|
|
|
def test_ddp_sharded_plugin_manual_optimization(tmpdir):
|
|
|
|
model = ManualBoringModel()
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(default_root_dir=tmpdir, strategy="ddp_sharded", fast_dev_run=2, gpus=2)
|
2021-04-10 16:14:37 +00:00
|
|
|
trainer.fit(model)
|
2021-09-02 02:23:59 +00:00
|
|
|
|
|
|
|
|
|
|
|
class BoringModelSharded(BoringModel):
|
|
|
|
def on_train_start(self) -> None:
|
|
|
|
"""Check if trainer module is wrapped as ShardedDataParallel during training stage."""
|
|
|
|
assert isinstance(self.trainer.model, ShardedDataParallel)
|
|
|
|
|
|
|
|
def on_test_start(self) -> None:
|
|
|
|
"""Check if trainer module remains as LightningModule during test stage."""
|
|
|
|
assert isinstance(self.trainer.model, LightningModule)
|
|
|
|
|
|
|
|
def on_validation_start(self) -> None:
|
|
|
|
"""Check if trainer module remains as LightningModule during test stage."""
|
|
|
|
if self.trainer.state.fn == TrainerFn.FITTING:
|
|
|
|
assert isinstance(self.trainer.model, ShardedDataParallel)
|
|
|
|
else:
|
|
|
|
assert isinstance(self.trainer.model, LightningModule)
|
|
|
|
|
|
|
|
def on_predict_start(self) -> None:
|
|
|
|
"""Check if trainer module remains as LightningModule during prediction stage."""
|
|
|
|
assert isinstance(self.trainer.model, LightningModule)
|
|
|
|
|
|
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
|
|
def test_configure_ddp(tmpdir):
|
|
|
|
"""Tests with ddp sharded plugin."""
|
2021-10-16 15:10:25 +00:00
|
|
|
trainer = Trainer(default_root_dir=tmpdir, strategy="ddp_sharded", fast_dev_run=True)
|
2021-09-02 02:23:59 +00:00
|
|
|
|
|
|
|
model = BoringModelSharded()
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
trainer.test(model, dataloaders=model.test_dataloader())
|
|
|
|
trainer.validate(model, dataloaders=model.val_dataloader())
|
|
|
|
trainer.predict(model, dataloaders=model.predict_dataloader())
|
2021-09-13 15:18:07 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
|
|
@mock.patch("pytorch_lightning.plugins.DDPShardedPlugin._wrap_optimizers", autospec=True)
|
|
|
|
@pytest.mark.parametrize("cls", [DDPShardedPlugin, DDPSpawnShardedPlugin])
|
|
|
|
def test_custom_kwargs_sharded(tmpdir, cls):
|
|
|
|
"""Tests to ensure that if custom kwargs are passed, they are set correctly."""
|
|
|
|
plugin = cls(reduce_fp16=True)
|
2021-11-29 09:58:23 +00:00
|
|
|
plugin.model = Mock(spec=LightningModule)
|
|
|
|
plugin.model.trainer = Mock()
|
2021-09-13 15:18:07 +00:00
|
|
|
class_name = "sharded" if isinstance(plugin, DDPShardedPlugin) else "sharded_spawn"
|
|
|
|
|
2021-11-29 09:58:23 +00:00
|
|
|
with mock.patch(
|
|
|
|
f"pytorch_lightning.plugins.training_type.{class_name}.ShardedDataParallel", autospec=True
|
|
|
|
) as mock_sharded:
|
|
|
|
plugin.configure_ddp()
|
2021-09-13 15:18:07 +00:00
|
|
|
args, kwargs = mock_sharded.call_args
|
|
|
|
assert "reduce_fp16" in kwargs
|
|
|
|
assert kwargs["reduce_fp16"]
|
2021-09-14 12:20:36 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
|
|
@mock.patch("pytorch_lightning.plugins.DDPShardedPlugin._wrap_optimizers", autospec=True)
|
|
|
|
@pytest.mark.parametrize(["params", "expected_buffer_size"], [(dict(), 0), (dict(reduce_buffer_size=128), 128)])
|
|
|
|
@pytest.mark.parametrize("num_nodes", [1, 2])
|
|
|
|
def test_custom_kwargs_sharded_reduce_buffer_size(tmpdir, params, expected_buffer_size, num_nodes):
|
|
|
|
"""Tests to ensure that ``reduce_buffer_size`` is correctly set based on user kwargs."""
|
|
|
|
plugin = DDPShardedPlugin(**params)
|
|
|
|
plugin.num_nodes = num_nodes
|
2021-11-29 09:58:23 +00:00
|
|
|
plugin.model = Mock(spec=LightningModule)
|
|
|
|
plugin.model.trainer = Mock()
|
2021-09-14 12:20:36 +00:00
|
|
|
|
2021-11-29 09:58:23 +00:00
|
|
|
with mock.patch(
|
|
|
|
"pytorch_lightning.plugins.training_type.sharded.ShardedDataParallel", autospec=True
|
|
|
|
) as mock_sharded:
|
|
|
|
plugin.configure_ddp()
|
2021-09-14 12:20:36 +00:00
|
|
|
args, kwargs = mock_sharded.call_args
|
|
|
|
assert "reduce_buffer_size" in kwargs
|
|
|
|
|
|
|
|
if num_nodes > 1 and len(params) == 0:
|
|
|
|
# If user has not specified a buffer size and we're using multiple nodes, check to see if default is set
|
|
|
|
assert kwargs["reduce_buffer_size"] == DDPShardedPlugin._REDUCE_BUFFER_SIZE_DEFAULT
|
|
|
|
else:
|
|
|
|
assert kwargs["reduce_buffer_size"] == expected_buffer_size
|
2021-09-22 08:56:38 +00:00
|
|
|
|
|
|
|
|
|
|
|
@RunIf(skip_windows=True, fairscale=True)
|
|
|
|
def test_block_backward_sync(tmpdir):
|
|
|
|
plugin = DDPShardedPlugin()
|
|
|
|
model = mock.MagicMock(spec=ShardedDataParallel)
|
|
|
|
with mock.patch.object(plugin, "_model", model):
|
|
|
|
with plugin.block_backward_sync():
|
|
|
|
pass
|
|
|
|
model.no_sync.assert_called_once()
|