lightning/tests/callbacks/test_callbacks.py

135 lines
4.7 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
2021-06-21 17:27:37 +00:00
from unittest.mock import call, Mock
from pytorch_lightning import Callback, Trainer
from tests.helpers import BoringModel
def test_callbacks_configured_in_model(tmpdir):
"""Test the callback system with callbacks added through the model hook."""
model_callback_mock = Mock()
trainer_callback_mock = Mock()
class TestModel(BoringModel):
def configure_callbacks(self):
return [model_callback_mock]
model = TestModel()
trainer_options = dict(
default_root_dir=tmpdir, checkpoint_callback=False, fast_dev_run=True, progress_bar_refresh_rate=0
)
def assert_expected_calls(_trainer, model_callback, trainer_callback):
# some methods in callbacks configured through model won't get called
uncalled_methods = [call.on_init_start(_trainer), call.on_init_end(_trainer)]
for uncalled in uncalled_methods:
assert uncalled not in model_callback.method_calls
# assert that the rest of calls are the same as for trainer callbacks
expected_calls = [m for m in trainer_callback.method_calls if m not in uncalled_methods]
assert expected_calls
assert model_callback.method_calls == expected_calls
# .fit()
trainer_options.update(callbacks=[trainer_callback_mock])
trainer = Trainer(**trainer_options)
assert trainer_callback_mock in trainer.callbacks
assert model_callback_mock not in trainer.callbacks
trainer.fit(model)
assert model_callback_mock in trainer.callbacks
assert trainer.callbacks[-1] == model_callback_mock
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
# .test()
for fn in ("test", "validate"):
model_callback_mock.reset_mock()
trainer_callback_mock.reset_mock()
trainer_options.update(callbacks=[trainer_callback_mock])
trainer = Trainer(**trainer_options)
trainer_fn = getattr(trainer, fn)
trainer_fn(model)
assert model_callback_mock in trainer.callbacks
assert trainer.callbacks[-1] == model_callback_mock
assert_expected_calls(trainer, model_callback_mock, trainer_callback_mock)
def test_configure_callbacks_hook_multiple_calls(tmpdir):
"""Test that subsequent calls to `configure_callbacks` do not change the callbacks list."""
model_callback_mock = Mock()
class TestModel(BoringModel):
def configure_callbacks(self):
return [model_callback_mock]
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir, fast_dev_run=True, checkpoint_callback=False, progress_bar_refresh_rate=1
)
callbacks_before_fit = trainer.callbacks.copy()
assert callbacks_before_fit
trainer.fit(model)
callbacks_after_fit = trainer.callbacks.copy()
assert callbacks_after_fit == callbacks_before_fit + [model_callback_mock]
for fn in ("test", "validate"):
trainer_fn = getattr(trainer, fn)
trainer_fn(model)
callbacks_after = trainer.callbacks.copy()
assert callbacks_after == callbacks_after_fit
trainer_fn(model)
callbacks_after = trainer.callbacks.copy()
assert callbacks_after == callbacks_after_fit
class OldStatefulCallback(Callback):
def __init__(self, state):
self.state = state
@property
def state_key(self):
return type(self)
def on_save_checkpoint(self, *args):
return {"state": self.state}
def on_load_checkpoint(self, trainer, pl_module, callback_state):
self.state = callback_state["state"]
def test_resume_callback_state_saved_by_type(tmpdir):
"""Test that a legacy checkpoint that didn't use a state key before can still be loaded."""
model = BoringModel()
callback = OldStatefulCallback(state=111)
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, callbacks=[callback])
trainer.fit(model)
ckpt_path = Path(trainer.checkpoint_callback.best_model_path)
assert ckpt_path.exists()
callback = OldStatefulCallback(state=222)
trainer = Trainer(default_root_dir=tmpdir, max_steps=2, callbacks=[callback], resume_from_checkpoint=ckpt_path)
trainer.fit(model)
assert callback.state == 111