64 lines
2.5 KiB
Python
64 lines
2.5 KiB
Python
|
# Copyright The PyTorch Lightning team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
from typing import Any
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from pytorch_lightning.core.lightning import LightningModule
|
||
|
from pytorch_lightning.trainer.states import RunningStage
|
||
|
from pytorch_lightning.utilities.warnings import WarningCache
|
||
|
|
||
|
warning_cache = WarningCache()
|
||
|
|
||
|
|
||
|
class _LightningModuleWrapperBase(torch.nn.Module):
|
||
|
|
||
|
def __init__(self, pl_module: LightningModule):
|
||
|
"""
|
||
|
Wraps the user's LightningModule and redirects the forward call to the appropriate
|
||
|
method, either ``training_step``, ``validation_step`` or ``test_step``.
|
||
|
If the LightningModule is in none of the states `training`, `testing` or `validation`,
|
||
|
the inputs will be redirected to the
|
||
|
:meth:`~pytorch_lightning.core.lightning.LightningModule.predict` method.
|
||
|
Inheriting classes may also modify the inputs or outputs of forward.
|
||
|
|
||
|
Args:
|
||
|
pl_module: the model to wrap
|
||
|
"""
|
||
|
super().__init__()
|
||
|
self.module = pl_module
|
||
|
|
||
|
def forward(self, *inputs, **kwargs):
|
||
|
running_stage = self.module.running_stage
|
||
|
|
||
|
if running_stage == RunningStage.TRAINING:
|
||
|
output = self.module.training_step(*inputs, **kwargs)
|
||
|
warn_if_output_is_none(output, "training_step")
|
||
|
elif running_stage == RunningStage.TESTING:
|
||
|
output = self.module.test_step(*inputs, **kwargs)
|
||
|
warn_if_output_is_none(output, "test_step")
|
||
|
elif running_stage == RunningStage.EVALUATING:
|
||
|
output = self.module.validation_step(*inputs, **kwargs)
|
||
|
warn_if_output_is_none(output, "validation_step")
|
||
|
else:
|
||
|
output = self.module.predict(*inputs, **kwargs)
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def warn_if_output_is_none(output: Any, method_name: str) -> None:
|
||
|
""" Warns user about which method returned None. """
|
||
|
if output is None:
|
||
|
warning_cache.warn(f'Your {method_name} returned None. Did you forget to return an output?')
|