lightning/pytorch_lightning/trainer/training_tricks.py

59 lines
2.0 KiB
Python
Raw Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
from torch import Tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.core.lightning import LightningModule
EPSILON = 1e-6
EPSILON_FP16 = 1e-5
class TrainerTrainingTricksMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
replace Hparams by init args (#1896) * remove the need for hparams * remove the need for hparams * remove the need for hparams * remove the need for hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * replace self.hparams * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * fixed * finished moco * basic * testing * todo * recurse * hparams * persist * hparams * chlog * tests * tests * tests * tests * tests * tests * review * saving * tests * tests * tests * docs * finished moco * hparams * review * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * hparams * overwrite * transform * transform * transform * transform * cleaning * cleaning * tests * examples * examples * examples * Apply suggestions from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * chp key * tests * Apply suggestions from code review * class * updated docs * updated docs * updated docs * updated docs * save * wip * fix * flake8 Co-authored-by: Jirka <jirka@pytorchlightning.ai> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
2020-05-24 22:59:08 +00:00
default_root_dir: str
progress_bar_callback:...
on_gpu: bool
@abstractmethod
def get_model(self) -> LightningModule:
"""Warning: this is just empty shell for code implemented in other class."""
def print_nan_gradients(self) -> None:
model = self.get_model()
for param in model.parameters():
2019-12-04 12:04:58 +00:00
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
log.info(param, param.grad)
def detect_nan_tensors(self, loss: Tensor) -> None:
model = self.get_model()
# check if loss is nan
if not torch.isfinite(loss).all():
raise ValueError('The loss returned in `training_step` is nan or inf.')
# check if a network weight is nan
for name, param in model.named_parameters():
if not torch.isfinite(param).all():
self.print_nan_gradients()
raise ValueError(
f'Detected nan and/or inf values in `{name}`.'
' Check your forward pass for numerically unstable operations.'
)