2021-09-02 11:40:05 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from copy import deepcopy
|
|
|
|
from functools import partial
|
2021-09-08 13:43:40 +00:00
|
|
|
from typing import Any, Callable, Dict, List, Optional
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import Tensor
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
|
|
|
|
from pytorch_lightning.core.optimizer import LightningOptimizer
|
|
|
|
from pytorch_lightning.loops import Loop
|
|
|
|
from pytorch_lightning.loops.closure import Closure, ClosureResult
|
|
|
|
from pytorch_lightning.loops.utilities import (
|
|
|
|
_block_parallel_sync_behavior,
|
|
|
|
_build_training_step_kwargs,
|
|
|
|
_check_training_step_output,
|
|
|
|
_process_training_step_output,
|
|
|
|
)
|
|
|
|
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
|
|
|
|
from pytorch_lightning.trainer.progress import OptimizationProgress
|
|
|
|
from pytorch_lightning.utilities import AMPType, AttributeDict, DeviceType, grad_norm
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
2021-09-02 16:35:22 +00:00
|
|
|
from pytorch_lightning.utilities.finite_checks import detect_nan_parameters
|
2021-09-02 11:40:05 +00:00
|
|
|
from pytorch_lightning.utilities.imports import _TPU_AVAILABLE
|
|
|
|
|
|
|
|
_OUTPUTS_TYPE = List[List[Optional[ResultCollection]]]
|
|
|
|
|
|
|
|
|
|
|
|
class OptimizerLoop(Loop):
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Runs over a sequence of optimizers.
|
|
|
|
|
|
|
|
This loop implements what is known in Lightning as Automatic Optimization.
|
|
|
|
"""
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
# TODO: use default dict here to simplify logic in loop
|
|
|
|
self.outputs: _OUTPUTS_TYPE = []
|
|
|
|
self.optim_progress: OptimizationProgress = OptimizationProgress()
|
|
|
|
|
|
|
|
self._skip_backward: bool = False
|
2021-09-06 11:54:07 +00:00
|
|
|
self._batch_idx: int = 0
|
|
|
|
self._optimizers: List[Optimizer] = []
|
2021-09-02 11:40:05 +00:00
|
|
|
self._hiddens: Optional[Any] = None
|
|
|
|
|
|
|
|
@property
|
|
|
|
def done(self) -> bool:
|
|
|
|
"""Returns ``True`` when the last optimizer in the sequence has run."""
|
|
|
|
return self.optim_progress.optimizer_idx >= len(self._optimizers)
|
|
|
|
|
|
|
|
def connect(self, **kwargs: "Loop") -> None:
|
|
|
|
raise NotImplementedError(f"{self.__class__.__name__} does not connect any child loops.")
|
|
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
|
if not self.restarting:
|
|
|
|
self.optim_progress.optimizer_idx = 0
|
|
|
|
self.outputs = [[] for _ in range(len(self.trainer.optimizers))]
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def on_run_start(self, batch: Any, optimizers: List[Optimizer], batch_idx: int) -> None: # type: ignore[override]
|
2021-09-02 11:40:05 +00:00
|
|
|
self._batch_idx = batch_idx
|
|
|
|
self._optimizers = optimizers
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def advance(self, batch: Any, *args, **kwargs) -> None: # type: ignore[override]
|
2021-09-02 11:40:05 +00:00
|
|
|
result = self._run_optimization(
|
|
|
|
batch,
|
2021-09-06 11:54:07 +00:00
|
|
|
self._batch_idx,
|
2021-09-02 11:40:05 +00:00
|
|
|
self._optimizers[self.optim_progress.optimizer_idx],
|
2021-09-06 11:54:07 +00:00
|
|
|
self.optim_progress.optimizer_idx,
|
2021-09-02 11:40:05 +00:00
|
|
|
)
|
2021-09-08 10:24:57 +00:00
|
|
|
if result.result_collection is not None:
|
2021-09-02 11:40:05 +00:00
|
|
|
self.outputs[self.optim_progress.optimizer_idx].append(deepcopy(result.result_collection))
|
|
|
|
|
|
|
|
self.optim_progress.optimizer_idx += 1
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def on_run_end(self) -> _OUTPUTS_TYPE:
|
|
|
|
outputs, self.outputs = self.outputs, [] # free memory
|
|
|
|
return outputs
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
def backward(
|
2021-09-08 13:43:40 +00:00
|
|
|
self, loss: Tensor, optimizer: torch.optim.Optimizer, opt_idx: int, *args: Any, **kwargs: Any
|
2021-09-02 11:40:05 +00:00
|
|
|
) -> Tensor:
|
|
|
|
"""Performs the backward step.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
loss: The loss value to back-propagate on
|
2021-09-06 11:54:07 +00:00
|
|
|
optimizer: Current optimizer being used
|
|
|
|
opt_idx: Index of the current optimizer being used
|
2021-09-02 11:40:05 +00:00
|
|
|
"""
|
|
|
|
self.trainer.accelerator.backward(loss, optimizer, opt_idx, *args, **kwargs)
|
|
|
|
|
|
|
|
if not self.trainer.fit_loop.should_accumulate():
|
|
|
|
# track gradients
|
|
|
|
grad_norm_dict = self._track_and_norm_grad(optimizer=optimizer)
|
|
|
|
if grad_norm_dict:
|
|
|
|
self.trainer.lightning_module._current_fx_name = "on_after_backward"
|
|
|
|
self.trainer.lightning_module.log_grad_norm(grad_norm_dict)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
def _run_optimization(
|
2021-09-08 13:43:40 +00:00
|
|
|
self, split_batch: Any, batch_idx: int, optimizer: torch.optim.Optimizer, opt_idx: int
|
2021-09-08 10:24:57 +00:00
|
|
|
) -> ClosureResult:
|
2021-09-02 11:40:05 +00:00
|
|
|
"""Runs closure (train step + backward) together with optimization if necessary.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
split_batch: the current tbptt split of the whole batch
|
2021-09-06 11:54:07 +00:00
|
|
|
batch_idx: the index of the current batch
|
|
|
|
optimizer: the current optimizer
|
|
|
|
opt_idx: the index of the current optimizer
|
2021-09-02 11:40:05 +00:00
|
|
|
"""
|
|
|
|
# toggle model params
|
|
|
|
self._run_optimization_start(opt_idx, optimizer)
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
closure = self._make_closure(split_batch, batch_idx, opt_idx, optimizer)
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
if self.trainer.fit_loop.should_accumulate():
|
|
|
|
# For gradient accumulation
|
|
|
|
|
|
|
|
# -------------------
|
|
|
|
# calculate loss (train step + train step end)
|
|
|
|
# -------------------
|
|
|
|
# automatic_optimization=True: perform ddp sync only when performing optimizer_step
|
|
|
|
with _block_parallel_sync_behavior(self.trainer, block=True):
|
|
|
|
closure()
|
|
|
|
|
|
|
|
# ------------------------------
|
|
|
|
# BACKWARD PASS
|
|
|
|
# ------------------------------
|
|
|
|
# gradient update with accumulated gradients
|
|
|
|
else:
|
|
|
|
self._optimizer_step(optimizer, opt_idx, batch_idx, closure)
|
|
|
|
|
2021-09-08 10:24:57 +00:00
|
|
|
result = closure.consume_result()
|
2021-09-02 11:40:05 +00:00
|
|
|
|
2021-09-08 10:24:57 +00:00
|
|
|
if result.loss is not None:
|
2021-09-02 11:40:05 +00:00
|
|
|
# if no result, user decided to skip optimization
|
|
|
|
# otherwise update running loss + reset accumulated loss
|
|
|
|
# TODO: find proper way to handle updating running loss
|
2021-09-06 11:54:07 +00:00
|
|
|
assert self.trainer.fit_loop is not None
|
|
|
|
assert self.trainer.fit_loop.epoch_loop is not None
|
|
|
|
assert self.trainer.fit_loop.epoch_loop.batch_loop is not None
|
2021-09-02 11:40:05 +00:00
|
|
|
self.trainer.fit_loop.epoch_loop.batch_loop._update_running_loss(result.loss)
|
|
|
|
|
|
|
|
# untoggle model params
|
|
|
|
self._run_optimization_end(opt_idx)
|
|
|
|
return result
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def _make_closure(self, split_batch: Any, batch_idx: int, opt_idx: int, optimizer: Optimizer) -> Closure:
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Build a closure object that captures the given arguments and runs the `training_step` function and
|
|
|
|
optionally other functions such as `backward` and `zero_grad`."""
|
2021-09-08 13:43:40 +00:00
|
|
|
step_fn = self._make_step_fn(split_batch, batch_idx, opt_idx)
|
2021-09-02 11:40:05 +00:00
|
|
|
backward_fn = self._make_backward_fn(optimizer, opt_idx)
|
|
|
|
zero_grad_fn = self._make_zero_grad_fn(batch_idx, opt_idx, optimizer)
|
|
|
|
|
|
|
|
return Closure(
|
2021-09-08 13:43:40 +00:00
|
|
|
step_fn=step_fn, backward_fn=backward_fn, zero_grad_fn=zero_grad_fn, profiler=self.trainer.profiler
|
2021-09-02 11:40:05 +00:00
|
|
|
)
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def _make_step_fn(self, split_batch: Any, batch_idx: int, opt_idx: int) -> Callable[[], Optional[AttributeDict]]:
|
2021-09-02 11:40:05 +00:00
|
|
|
"""Build the step function that runs the `training_step` and processes its output."""
|
2021-09-08 13:43:40 +00:00
|
|
|
return partial(self._training_step, split_batch, batch_idx, opt_idx)
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
def _make_zero_grad_fn(self, batch_idx: int, opt_idx: int, optimizer: Optimizer) -> Optional[Callable[[], None]]:
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Build a `zero_grad` function that zeroes the gradients before back-propagation.
|
|
|
|
|
2021-09-06 11:54:07 +00:00
|
|
|
Returns ``None`` in the case backward needs to be skipped.
|
2021-09-02 11:40:05 +00:00
|
|
|
"""
|
|
|
|
|
2021-09-06 11:54:07 +00:00
|
|
|
if self._skip_backward:
|
|
|
|
return None
|
|
|
|
|
|
|
|
is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0
|
|
|
|
if not is_first_batch_to_accumulate:
|
|
|
|
return None
|
|
|
|
|
2021-09-02 11:40:05 +00:00
|
|
|
def zero_grad_fn():
|
|
|
|
self._on_before_zero_grad(optimizer)
|
|
|
|
self._optimizer_zero_grad(batch_idx, optimizer, opt_idx)
|
|
|
|
|
2021-09-06 11:54:07 +00:00
|
|
|
return zero_grad_fn
|
2021-09-02 11:40:05 +00:00
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def _make_backward_fn(self, optimizer: Optimizer, opt_idx: int) -> Optional[Callable[[Tensor], Tensor]]:
|
2021-09-06 12:49:09 +00:00
|
|
|
"""Build a `backward` function that handles back-propagation through the output produced by the
|
|
|
|
`training_step` function.
|
|
|
|
|
|
|
|
Returns ``None`` in the case backward needs to be skipped.
|
2021-09-02 11:40:05 +00:00
|
|
|
"""
|
2021-09-06 11:54:07 +00:00
|
|
|
if self._skip_backward:
|
|
|
|
return None
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
def backward_fn(loss: Tensor):
|
|
|
|
self.backward(loss, optimizer, opt_idx)
|
|
|
|
|
2021-09-02 16:35:22 +00:00
|
|
|
# check if model weights are nan
|
2021-09-02 11:40:05 +00:00
|
|
|
if self.trainer.terminate_on_nan:
|
2021-09-02 16:35:22 +00:00
|
|
|
detect_nan_parameters(self.trainer.lightning_module)
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
return loss
|
|
|
|
|
2021-09-06 11:54:07 +00:00
|
|
|
return backward_fn
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
def _run_optimization_start(self, opt_idx: int, optimizer: torch.optim.Optimizer) -> None:
|
|
|
|
"""Toggles the optimizer to ensure the correct one is used and prevend dangling grads.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
opt_idx: the index of the optimizer to use
|
|
|
|
optimizer: the optimizer to use
|
|
|
|
"""
|
|
|
|
# make sure only the gradients of the current optimizer's parameters are calculated
|
|
|
|
# in the training step to prevent dangling gradients in multiple-optimizer setup.
|
|
|
|
if len(self.trainer.optimizers) > 1:
|
|
|
|
model = self.trainer.lightning_module
|
|
|
|
model.toggle_optimizer(optimizer, opt_idx)
|
|
|
|
|
|
|
|
def _run_optimization_end(self, opt_idx: int) -> None:
|
|
|
|
if len(self.trainer.optimizers) > 1:
|
|
|
|
model = self.trainer.lightning_module
|
|
|
|
model.untoggle_optimizer(opt_idx)
|
|
|
|
|
|
|
|
def _optimizer_step(
|
|
|
|
self, optimizer: torch.optim.Optimizer, opt_idx: int, batch_idx: int, train_step_and_backward_closure: Callable
|
|
|
|
) -> None:
|
|
|
|
"""Performs the optimizer step and some sanity checking.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optimizer: the optimizer to perform the step with
|
|
|
|
opt_idx: the index of the current :param:`optimizer`
|
|
|
|
batch_idx: the index of the current batch
|
|
|
|
train_step_and_backward_closure: the closure function performing the train step and computing the
|
|
|
|
gradients. By default called by the optimizer (if possible)
|
|
|
|
"""
|
|
|
|
model_ref = self.trainer.lightning_module
|
|
|
|
|
|
|
|
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
|
2021-09-06 11:54:07 +00:00
|
|
|
using_native_amp = self.trainer.amp_backend is not None and self.trainer.amp_backend == AMPType.NATIVE
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
# native amp + lbfgs is a no go right now
|
|
|
|
if using_native_amp and is_lbfgs:
|
|
|
|
raise MisconfigurationException(
|
|
|
|
"native PyTorch amp and lbfgs are not compatible."
|
|
|
|
" To request, please file a Github issue in PyTorch and tag @mcarilli"
|
|
|
|
)
|
|
|
|
|
|
|
|
# wraps into LightningOptimizer only for running step
|
|
|
|
optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx)
|
|
|
|
|
|
|
|
self.optim_progress.optimizer.step.increment_ready()
|
|
|
|
|
|
|
|
# model hook
|
|
|
|
model_ref.optimizer_step(
|
|
|
|
self.trainer.current_epoch,
|
|
|
|
batch_idx,
|
|
|
|
optimizer,
|
|
|
|
opt_idx,
|
|
|
|
train_step_and_backward_closure,
|
|
|
|
on_tpu=(self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE),
|
|
|
|
using_native_amp=using_native_amp,
|
|
|
|
using_lbfgs=is_lbfgs,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.optim_progress.optimizer.step.increment_completed()
|
|
|
|
|
|
|
|
def _on_before_zero_grad(self, optimizer: torch.optim.Optimizer) -> None:
|
|
|
|
"""Calls the ``on_before_zero_grad`` hook.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optimizer: the current optimizer
|
|
|
|
"""
|
|
|
|
self.optim_progress.optimizer.zero_grad.increment_ready()
|
|
|
|
self.trainer.call_hook("on_before_zero_grad", optimizer)
|
|
|
|
self.optim_progress.optimizer.zero_grad.increment_started()
|
|
|
|
|
|
|
|
def _optimizer_zero_grad(self, batch_idx: int, optimizer: torch.optim.Optimizer, opt_idx: int) -> None:
|
|
|
|
"""Zeroes out all gradients of parameters optimized by the current optimizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
batch_idx: the index of the current batch
|
|
|
|
optimizer: the current optimizer
|
|
|
|
opt_idx: the index of the current optimizer
|
|
|
|
"""
|
|
|
|
self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)
|
|
|
|
self.optim_progress.optimizer.zero_grad.increment_completed()
|
|
|
|
|
2021-09-08 13:43:40 +00:00
|
|
|
def _training_step(self, split_batch: Any, batch_idx: int, opt_idx: int) -> Optional[AttributeDict]:
|
2021-09-02 11:40:05 +00:00
|
|
|
"""Performs the actual train step with the tied hooks.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
split_batch: the current tbptt split of the current batch
|
|
|
|
batch_idx: the index of the current batch
|
|
|
|
opt_idx: the index of the current optimizer
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
an AttributeDict containing the loss value and the training step output.
|
|
|
|
"""
|
|
|
|
# give the PL module a result for logging
|
|
|
|
model_ref = self.trainer.lightning_module
|
|
|
|
|
|
|
|
with self.trainer.profiler.profile("model_forward"):
|
|
|
|
|
|
|
|
step_kwargs = _build_training_step_kwargs(
|
2021-09-08 13:43:40 +00:00
|
|
|
self.trainer.lightning_module, self.trainer.optimizers, split_batch, batch_idx, opt_idx, self._hiddens
|
2021-09-02 11:40:05 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# manually capture logged metrics
|
|
|
|
model_ref._current_fx_name = "training_step"
|
|
|
|
with self.trainer.profiler.profile("training_step"):
|
|
|
|
training_step_output = self.trainer.accelerator.training_step(step_kwargs)
|
|
|
|
self.trainer.accelerator.post_training_step()
|
|
|
|
|
|
|
|
del step_kwargs
|
|
|
|
|
|
|
|
training_step_output = self.trainer.call_hook("training_step_end", training_step_output)
|
|
|
|
|
|
|
|
_check_training_step_output(self.trainer.lightning_module, training_step_output)
|
|
|
|
|
|
|
|
result_collection, self._hiddens = _process_training_step_output(self.trainer, training_step_output)
|
|
|
|
if result_collection is None:
|
2021-09-06 11:54:07 +00:00
|
|
|
return None
|
|
|
|
|
|
|
|
# output validation already done, here loss can't be None
|
|
|
|
assert result_collection.minimize is not None
|
2021-09-02 11:40:05 +00:00
|
|
|
|
|
|
|
# accumulate loss. if accumulate_grad_batches==1, no effect
|
|
|
|
closure_loss = result_collection.minimize / self.trainer.accumulate_grad_batches
|
|
|
|
# the loss will get scaled for amp. avoid any modifications to it
|
|
|
|
loss = closure_loss.detach().clone()
|
|
|
|
return AttributeDict(closure_loss=closure_loss, loss=loss, result_collection=result_collection)
|
|
|
|
|
|
|
|
def _track_and_norm_grad(self, optimizer: torch.optim.Optimizer) -> Dict[str, float]:
|
|
|
|
"""Tracks gradient norms and clips the gradients of all parameters optimized by the current optimizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
optimizer: the current optimizer
|
|
|
|
"""
|
|
|
|
# track gradient norms
|
|
|
|
grad_norm_dict = {}
|
|
|
|
can_log = (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0
|
|
|
|
should_track = float(self.trainer.track_grad_norm) > 0
|
|
|
|
if should_track and can_log:
|
|
|
|
grad_norm_dict = grad_norm(self.trainer.lightning_module, self.trainer.track_grad_norm)
|
|
|
|
|
|
|
|
# clip gradients
|
|
|
|
self.trainer.accelerator.clip_gradients(
|
|
|
|
optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm
|
|
|
|
)
|
|
|
|
return grad_norm_dict
|