2019-06-27 18:22:00 +00:00
Lightning makes multi-gpu training and 16 bit training trivial.
*Note:*
None of the flags below require changing anything about your lightningModel definition.
2019-07-21 12:29:12 +00:00
---
#### Choosing a backend
Lightning supports two backends. DataParallel and DistributedDataParallel. Both can be used for single-node multi-GPU training.
For multi-node training you must use DistributedDataParallel.
2019-09-26 16:02:03 +00:00
**Warning: Your cluster must have NCCL installed and you must load it when submitting your SLURM script**
2019-07-21 12:29:12 +00:00
You can toggle between each mode by setting this flag.
``` {.python}
2019-09-08 19:36:58 +00:00
# DEFAULT (when using single GPU or no GPUs)
trainer = Trainer(distributed_backend=None)
# Change to DataParallel (gpus > 1)
2019-07-21 12:29:12 +00:00
trainer = Trainer(distributed_backend='dp')
2019-09-08 19:36:58 +00:00
# change to distributed data parallel (gpus > 1)
2019-07-21 12:29:12 +00:00
trainer = Trainer(distributed_backend='ddp')
```
If you request multiple nodes, the back-end will auto-switch to ddp.
We recommend you use DistributedDataparallel even for single-node multi-GPU training. It is MUCH faster than DP but *may*
have configuration issues depending on your cluster.
For a deeper understanding of what lightning is doing, feel free to read [this guide ](https://medium.com/@_willfalcon/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565 ).
2019-08-07 18:14:23 +00:00
---
#### Distributed and 16-bit precision.
Due to an issue with apex and DistributedDataParallel (PyTorch and NVIDIA issue), Lightning does
not allow 16-bit and DP training. We tried to get this to work, but it's an issue on their end.
2019-08-07 18:16:40 +00:00
Below are the possible configurations we support.
2019-08-07 18:14:23 +00:00
| 1 GPU | 1+ GPUs | DP | DDP | 16-bit | command |
|---|---|---|---|---|---|
2019-09-08 19:36:58 +00:00
| Y | | | | | ```Trainer(gpus=1)``` |
| Y | | | | Y | ```Trainer(gpus=1, use_amp=True)``` |
2019-09-16 14:59:28 +00:00
| | Y | Y | | | ```Trainer(gpus=k, distributed_backend='dp')``` |
2019-09-08 19:36:58 +00:00
| | Y | | Y | | ```Trainer(gpus=k, distributed_backend='ddp')``` |
| | Y | | Y | Y | ```Trainer(gpus=k, distributed_backend='ddp', use_amp=True)``` |
You also have the option of specifying which GPUs to use by passing a list:
```python
# DEFAULT (int)
Trainer(gpus=k)
2019-08-07 18:14:23 +00:00
2019-09-08 19:36:58 +00:00
# You specify which GPUs (don't use if running on cluster)
Trainer(gpus=[0, 1])
# can also be a string
Trainer(gpus='0, 1')
```
2019-08-07 18:14:23 +00:00
2019-07-27 22:27:38 +00:00
---
#### CUDA flags
CUDA flags make certain GPUs visible to your script.
Lightning sets these for you automatically, there's NO NEED to do this yourself.
```python
# lightning will set according to what you give the trainer
# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
```
2019-09-08 19:36:58 +00:00
However, when using a cluster, Lightning will NOT set these flags (and you should not either).
SLURM will set these for you.
2019-06-27 18:22:00 +00:00
---
#### 16-bit mixed precision
16 bit precision can cut your memory footprint by half. If using volta architecture GPUs it can give a dramatic training speed-up as well.
First, install apex (if install fails, look [here ](https://github.com/NVIDIA/apex )):
```bash
$ git clone https://github.com/NVIDIA/apex
$ cd apex
2019-09-26 13:36:03 +00:00
# ------------------------
# OPTIONAL: on your cluster you might need to load cuda 10 or 9
# depending on how you installed PyTorch
# see available modules
module avail
# load correct cuda before install
module load cuda-10.0
# ------------------------
2019-09-26 19:30:54 +00:00
# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0
2019-09-26 19:27:34 +00:00
2019-06-27 18:22:00 +00:00
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
```
then set this use_amp to True.
``` {.python}
# DEFAULT
trainer = Trainer(amp_level='O2', use_amp=False)
```
---
#### Single-gpu
Make sure you're on a GPU machine.
```python
# DEFAULT
2019-09-08 19:36:58 +00:00
trainer = Trainer(gpus=1)
2019-06-27 18:22:00 +00:00
```
---
#### multi-gpu
Make sure you're on a GPU machine. You can set as many GPUs as you want.
In this setting, the model will run on all 8 GPUs at once using DataParallel under the hood.
```python
2019-09-08 19:36:58 +00:00
# to use DataParallel
trainer = Trainer(gpus=8, distributed_backend='dp')
2019-07-21 12:35:29 +00:00
# RECOMMENDED use DistributedDataParallel
2019-09-08 19:36:58 +00:00
trainer = Trainer(gpus=8, distributed_backend='ddp')
2019-06-27 18:22:00 +00:00
```
---
#### Multi-node
2019-09-26 16:02:03 +00:00
Multi-node training is easily done by specifying these flags.
2019-07-21 12:17:12 +00:00
```python
# train on 12*8 GPUs
2019-09-16 15:02:04 +00:00
trainer = Trainer(gpus=8, nb_gpu_nodes=12, distributed_backend='ddp')
2019-07-21 12:17:12 +00:00
```
2019-09-26 16:02:03 +00:00
You must configure your job submission script correctly for the trainer to work. Here is an example
script for the above trainer configuration.
2019-07-21 12:17:12 +00:00
2019-09-26 16:02:03 +00:00
```sh
#!/bin/bash -l
2019-07-21 12:17:12 +00:00
2019-09-26 16:02:03 +00:00
# SLURM SUBMIT SCRIPT
#SBATCH --nodes=12
#SBATCH --gres=gpu:8
#SBATCH --ntasks-per-node=8
#SBATCH --mem=0
#SBATCH --time=0-02:00:00
2019-07-21 12:32:17 +00:00
2019-09-26 16:02:03 +00:00
# activate conda env
conda activate my_env
2019-07-21 12:32:17 +00:00
2019-09-26 16:02:03 +00:00
# REQUIRED: Load the latest NCCL version
# the nccl version must match the cuda used to build your PyTorch distribution
# (ie: which instructions did you follow when installing PyTorch)
# module load NCCL/2.4.7-1-cuda.10.0
2019-07-21 12:32:17 +00:00
2019-09-26 16:02:03 +00:00
# -------------------------
# OPTIONAL
# -------------------------
# debugging flags (optional)
# export NCCL_DEBUG=INFO
# export PYTHONFAULTHANDLER=1
2019-07-21 12:32:17 +00:00
2019-09-26 16:02:03 +00:00
# on your cluster you might need these:
# set the network interface
# export NCCL_SOCKET_IFNAME=^docker0,lo
# -------------------------
# random port between 12k and 20k
export MASTER_PORT=$((12000 + RANDOM % 20000))
2019-07-21 12:17:12 +00:00
2019-09-26 16:02:03 +00:00
# run script from above
python my_main_file.py
2019-07-21 12:17:12 +00:00
```
2019-06-27 18:22:00 +00:00
2019-09-16 15:02:04 +00:00
**NOTE:** When running in DDP mode, any errors in your code will show up as an NCCL issue.
Set the ```NCCL_DEBUG=INFO``` flag to see the ACTUAL error.
2019-07-21 12:30:17 +00:00
Finally, make sure to add a distributed sampler to your dataset. The distributed sampler copies a
portion of your dataset onto each GPU. (World_size = gpus_per_node * nb_nodes).
2019-07-21 12:29:12 +00:00
```python
# ie: this:
dataset = myDataset()
dataloader = Dataloader(dataset)
# becomes:
dataset = myDataset()
dist_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = Dataloader(dataset, sampler=dist_sampler)
```
2019-09-26 16:02:03 +00:00
#### Auto-slurm-job-submission
Instead of manually building SLURM scripts, you can use the [SlurmCluster object ](https://williamfalcon.github.io/test-tube/hpc/SlurmCluster/ ) to
do this for you. The SlurmCluster can also run a grid search if you pass in a [HyperOptArgumentParser ](https://williamfalcon.github.io/test-tube/hyperparameter_optimization/HyperOptArgumentParser/ ).
Here is an example where you run a grid search of 9 combinations of hyperparams.
[The full examples are here ](https://github.com/williamFalcon/pytorch-lightning/tree/master/examples/new_project_templates/multi_node_examples ).
```python
# grid search 3 values of learning rate and 3 values of number of layers for your net
# this generates 9 experiments (lr=1e-3, layers=16), (lr=1e-3, layers=32), (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
parser.opt_list('--learning_rate', default=0.001, type=float, options=[1e-3, 1e-2, 1e-1], tunable=True)
parser.opt_list('--layers', default=1, type=float, options=[16, 32, 64], tunable=True)
hyperparams = parser.parse_args()
# Slurm cluster submits 9 jobs, each with a set of hyperparams
cluster = SlurmCluster(
hyperparam_optimizer=hyperparams,
log_path='/some/path/to/save',
)
# OPTIONAL FLAGS WHICH MAY BE CLUSTER DEPENDENT
# which interface your nodes use for communication
cluster.add_command('export NCCL_SOCKET_IFNAME=^docker0,lo')
# see output of the NCCL connection process
# NCCL is how the nodes talk to each other
cluster.add_command('export NCCL_DEBUG=INFO')
# setting a master port here is a good idea.
cluster.add_command('export MASTER_PORT=%r' % PORT)
# ************** DON'T FORGET THIS ***************
# MUST load the latest NCCL version
cluster.load_modules(['NCCL/2.4.7-1-cuda.10.0'])
# configure cluster
cluster.per_experiment_nb_nodes = 12
cluster.per_experiment_nb_gpus = 8
cluster.add_slurm_cmd(cmd='ntasks-per-node', value=8, comment='1 task per gpu')
# submit a script with 9 combinations of hyper params
# (lr=1e-3, layers=16), (lr=1e-3, layers=32), (lr=1e-3, layers=64), ... (lr=1e-1, layers=64)
cluster.optimize_parallel_cluster_gpu(
main,
nb_trials=9, # how many permutations of the grid search to run
job_name='name_for_squeue'
)
```
The other option is that you generate scripts on your own via a bash command or use another library...
2019-06-27 18:22:00 +00:00
---
#### Self-balancing architecture
Here lightning distributes parts of your module across available GPUs to optimize for speed and memory.
COMING SOON.