lightning/tests/tests_pytorch/callbacks/test_callback_hook_outputs.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

59 lines
2.0 KiB
Python
Raw Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.demos.boring_classes import BoringModel
@pytest.mark.parametrize("single_cb", [False, True])
def test_train_step_no_return(tmpdir, single_cb: bool):
"""Tests that only training_step can be used."""
class CB(Callback):
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
assert "loss" in outputs
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
assert "x" in outputs
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
assert "x" in outputs
class TestModel(BoringModel):
def on_train_batch_end(self, outputs, batch, batch_idx: int) -> None:
assert "loss" in outputs
def on_validation_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
assert "x" in outputs
def on_test_batch_end(self, outputs, batch, batch_idx: int, dataloader_idx: int) -> None:
assert "x" in outputs
model = TestModel()
trainer = Trainer(
callbacks=CB() if single_cb else [CB()],
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
)
assert any(isinstance(c, CB) for c in trainer.callbacks)
trainer.fit(model)