lightning/tests/loggers/test_base.py

180 lines
4.8 KiB
Python
Raw Normal View History

import pickle
from unittest.mock import MagicMock
Added accumulation of loggers' metrics for the same steps (#1278) * `add_argparse_args` method fixed (argument types added) * autopep8 fixes * --gpus=0 removed from test (for ci tests) * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * test_with_accumulate_grad_batches added * agg_and_log_metrics logic added to the base logger class * small format fix * agg metrics strategies removed (not to complicate stuff) * agg metrics: handle zero step * autopep8 * changelog upd * flake fix * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove .item which causes sync issues (#1254) * remove .item which causes sync issues * fixed gradient acc sched * fixed gradient acc sched * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * autopep8 * loggers base.py types fixed * test * test * metrics aggregation for loggers: each key now has a specific function (or default one) * metrics aggregation for loggers: each key now has a specific function (or default one) * docstrings upd * manual typehints removed from docstrings * batch_size decreased for test `test_with_accumulate_grad_batches` * extend running accum * refactor * fix tests * fix tests * allowed_types generator scoped * trainer.py distutils was imported twice, fixed * TensorRunningAccum refactored * TensorRunningAccum added to change log (Changed) * change log pull link added Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: J. Borovec <jirka.borovec@seznam.cz>
2020-04-08 12:35:47 +00:00
import numpy as np
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection
from pytorch_lightning.utilities import rank_zero_only
from tests.base import LightningTestModel, EvalModelTemplate
def test_logger_collection():
mock1 = MagicMock()
mock2 = MagicMock()
logger = LoggerCollection([mock1, mock2])
assert logger[0] == mock1
assert logger[1] == mock2
assert logger.experiment[0] == mock1.experiment
assert logger.experiment[1] == mock2.experiment
logger.close()
mock1.close.assert_called_once()
mock2.close.assert_called_once()
class CustomLogger(LightningLoggerBase):
def __init__(self):
super().__init__()
self.hparams_logged = None
self.metrics_logged = None
self.finalized = False
@property
def experiment(self):
return 'test'
@rank_zero_only
def log_hyperparams(self, params):
self.hparams_logged = params
@rank_zero_only
def log_metrics(self, metrics, step):
self.metrics_logged = metrics
@rank_zero_only
def finalize(self, status):
self.finalized_status = status
@property
def name(self):
return "name"
@property
def version(self):
return "1"
def test_custom_logger(tmpdir):
hparams = tutils.get_default_hparams()
model = LightningTestModel(hparams)
logger = CustomLogger()
trainer = Trainer(
max_epochs=1,
train_percent_check=0.05,
logger=logger,
default_root_dir=tmpdir
)
result = trainer.fit(model)
assert result == 1, "Training failed"
assert logger.hparams_logged == hparams
assert logger.metrics_logged != {}
assert logger.finalized_status == "success"
def test_multiple_loggers(tmpdir):
hparams = tutils.get_default_hparams()
model = LightningTestModel(hparams)
logger1 = CustomLogger()
logger2 = CustomLogger()
trainer = Trainer(
max_epochs=1,
train_percent_check=0.05,
logger=[logger1, logger2],
default_root_dir=tmpdir
)
result = trainer.fit(model)
assert result == 1, "Training failed"
assert logger1.hparams_logged == hparams
assert logger1.metrics_logged != {}
assert logger1.finalized_status == "success"
assert logger2.hparams_logged == hparams
assert logger2.metrics_logged != {}
assert logger2.finalized_status == "success"
def test_multiple_loggers_pickle(tmpdir):
"""Verify that pickling trainer with multiple loggers works."""
logger1 = CustomLogger()
logger2 = CustomLogger()
trainer = Trainer(max_epochs=1, logger=[logger1, logger2])
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0}, 0)
assert logger1.metrics_logged != {}
assert logger2.metrics_logged != {}
def test_adding_step_key(tmpdir):
logged_step = 0
def _validation_epoch_end(outputs):
nonlocal logged_step
logged_step += 1
return {"log": {"step": logged_step, "val_acc": logged_step / 10}}
def _training_epoch_end(outputs):
nonlocal logged_step
logged_step += 1
return {"log": {"step": logged_step, "train_acc": logged_step / 10}}
def _log_metrics_decorator(log_metrics_fn):
def decorated(metrics, step):
if "val_acc" in metrics:
assert step == logged_step
return log_metrics_fn(metrics, step)
return decorated
model = EvalModelTemplate(tutils.get_default_hparams())
model.validation_epoch_end = _validation_epoch_end
model.training_epoch_end = _training_epoch_end
trainer = Trainer(
max_epochs=4,
default_root_dir=tmpdir,
train_percent_check=0.001,
val_percent_check=0.01,
num_sanity_val_steps=0,
)
Added accumulation of loggers' metrics for the same steps (#1278) * `add_argparse_args` method fixed (argument types added) * autopep8 fixes * --gpus=0 removed from test (for ci tests) * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * test_with_accumulate_grad_batches added * agg_and_log_metrics logic added to the base logger class * small format fix * agg metrics strategies removed (not to complicate stuff) * agg metrics: handle zero step * autopep8 * changelog upd * flake fix * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove .item which causes sync issues (#1254) * remove .item which causes sync issues * fixed gradient acc sched * fixed gradient acc sched * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * autopep8 * loggers base.py types fixed * test * test * metrics aggregation for loggers: each key now has a specific function (or default one) * metrics aggregation for loggers: each key now has a specific function (or default one) * docstrings upd * manual typehints removed from docstrings * batch_size decreased for test `test_with_accumulate_grad_batches` * extend running accum * refactor * fix tests * fix tests * allowed_types generator scoped * trainer.py distutils was imported twice, fixed * TensorRunningAccum refactored * TensorRunningAccum added to change log (Changed) * change log pull link added Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: J. Borovec <jirka.borovec@seznam.cz>
2020-04-08 12:35:47 +00:00
trainer.logger.log_metrics = _log_metrics_decorator(
trainer.logger.log_metrics)
trainer.fit(model)
Added accumulation of loggers' metrics for the same steps (#1278) * `add_argparse_args` method fixed (argument types added) * autopep8 fixes * --gpus=0 removed from test (for ci tests) * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * test_with_accumulate_grad_batches added * agg_and_log_metrics logic added to the base logger class * small format fix * agg metrics strategies removed (not to complicate stuff) * agg metrics: handle zero step * autopep8 * changelog upd * flake fix * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove .item which causes sync issues (#1254) * remove .item which causes sync issues * fixed gradient acc sched * fixed gradient acc sched * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * autopep8 * loggers base.py types fixed * test * test * metrics aggregation for loggers: each key now has a specific function (or default one) * metrics aggregation for loggers: each key now has a specific function (or default one) * docstrings upd * manual typehints removed from docstrings * batch_size decreased for test `test_with_accumulate_grad_batches` * extend running accum * refactor * fix tests * fix tests * allowed_types generator scoped * trainer.py distutils was imported twice, fixed * TensorRunningAccum refactored * TensorRunningAccum added to change log (Changed) * change log pull link added Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: J. Borovec <jirka.borovec@seznam.cz>
2020-04-08 12:35:47 +00:00
def test_with_accumulate_grad_batches():
"""Checks if the logging is performed once for `accumulate_grad_batches` steps."""
class StoreHistoryLogger(CustomLogger):
def __init__(self):
super().__init__()
self.history = {}
@rank_zero_only
def log_metrics(self, metrics, step):
if step not in self.history:
self.history[step] = {}
self.history[step].update(metrics)
Added accumulation of loggers' metrics for the same steps (#1278) * `add_argparse_args` method fixed (argument types added) * autopep8 fixes * --gpus=0 removed from test (for ci tests) * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Joe Davison <joe@huggingface.co> * test_with_accumulate_grad_batches added * agg_and_log_metrics logic added to the base logger class * small format fix * agg metrics strategies removed (not to complicate stuff) * agg metrics: handle zero step * autopep8 * changelog upd * flake fix * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * metrics aggregators factored out, metrics_agg.py added + tests * metrics agg default value added * Update pytorch_lightning/loggers/metrics_agg.py Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> * remove .item which causes sync issues (#1254) * remove .item which causes sync issues * fixed gradient acc sched * fixed gradient acc sched * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * test_metrics_agg.py removed (all tested in doctrings), agg metrics refactored * autopep8 * loggers base.py types fixed * test * test * metrics aggregation for loggers: each key now has a specific function (or default one) * metrics aggregation for loggers: each key now has a specific function (or default one) * docstrings upd * manual typehints removed from docstrings * batch_size decreased for test `test_with_accumulate_grad_batches` * extend running accum * refactor * fix tests * fix tests * allowed_types generator scoped * trainer.py distutils was imported twice, fixed * TensorRunningAccum refactored * TensorRunningAccum added to change log (Changed) * change log pull link added Co-authored-by: Joe Davison <joe@huggingface.co> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: J. Borovec <jirka.borovec@seznam.cz>
2020-04-08 12:35:47 +00:00
logger = StoreHistoryLogger()
np.random.seed(42)
for i, loss in enumerate(np.random.random(10)):
logger.agg_and_log_metrics({'loss': loss}, step=int(i / 5))
assert logger.history == {0: {'loss': 0.5623850983416314}}
logger.close()
assert logger.history == {0: {'loss': 0.5623850983416314}, 1: {'loss': 0.4778883735637184}}