2023-01-27 11:28:25 +00:00
|
|
|
"""
|
|
|
|
Proximal Policy Optimization (PPO) - Accelerated with Lightning Fabric
|
|
|
|
|
|
|
|
Author: Federico Belotti @belerico
|
|
|
|
Adapted from https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo.py
|
|
|
|
Based on the paper: https://arxiv.org/abs/1707.06347
|
|
|
|
|
|
|
|
Requirements:
|
2023-01-30 14:11:43 +00:00
|
|
|
- gymnasium[box2d]>=0.27.1
|
2023-01-27 11:28:25 +00:00
|
|
|
- moviepy
|
|
|
|
- lightning
|
|
|
|
- torchmetrics
|
|
|
|
- tensorboard
|
|
|
|
|
|
|
|
|
|
|
|
Run it with:
|
|
|
|
lightning run model --accelerator=cpu --strategy=ddp --devices=2 train_fabric.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
import argparse
|
2023-01-30 14:11:43 +00:00
|
|
|
import os
|
2023-01-27 11:28:25 +00:00
|
|
|
import time
|
|
|
|
from typing import Dict, Tuple
|
|
|
|
|
|
|
|
import gymnasium as gym
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
2023-01-30 14:11:43 +00:00
|
|
|
import torchmetrics
|
2023-01-27 11:28:25 +00:00
|
|
|
from src.loss import entropy_loss, policy_loss, value_loss
|
|
|
|
from src.utils import layer_init, make_env, parse_args
|
|
|
|
from torch.distributions import Categorical
|
|
|
|
from torch.utils.data import BatchSampler, DistributedSampler
|
|
|
|
from torchmetrics import MeanMetric
|
|
|
|
|
|
|
|
from lightning.fabric import Fabric
|
|
|
|
from lightning.fabric.loggers import TensorBoardLogger
|
|
|
|
from lightning.pytorch import LightningModule
|
|
|
|
|
|
|
|
|
|
|
|
class PPOLightningAgent(LightningModule):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
envs: gym.vector.SyncVectorEnv,
|
|
|
|
act_fun: str = "relu",
|
|
|
|
ortho_init: bool = False,
|
|
|
|
vf_coef: float = 0.5,
|
|
|
|
ent_coef: float = 0.01,
|
|
|
|
clip_coef: float = 0.2,
|
|
|
|
clip_vloss: bool = False,
|
|
|
|
normalize_advantages: bool = False,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
if act_fun.lower() == "relu":
|
|
|
|
act_fun = torch.nn.ReLU()
|
|
|
|
elif act_fun.lower() == "tanh":
|
|
|
|
act_fun = torch.nn.Tanh()
|
|
|
|
else:
|
|
|
|
raise ValueError("Unrecognized activation function: `act_fun` must be either `relu` or `tanh`")
|
|
|
|
self.vf_coef = vf_coef
|
|
|
|
self.ent_coef = ent_coef
|
|
|
|
self.clip_coef = clip_coef
|
|
|
|
self.clip_vloss = clip_vloss
|
|
|
|
self.normalize_advantages = normalize_advantages
|
|
|
|
self.critic = torch.nn.Sequential(
|
|
|
|
layer_init(
|
|
|
|
torch.nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64), ortho_init=ortho_init
|
|
|
|
),
|
|
|
|
act_fun,
|
|
|
|
layer_init(torch.nn.Linear(64, 64), ortho_init=ortho_init),
|
|
|
|
act_fun,
|
|
|
|
layer_init(torch.nn.Linear(64, 1), std=1.0, ortho_init=ortho_init),
|
|
|
|
)
|
|
|
|
self.actor = torch.nn.Sequential(
|
|
|
|
layer_init(
|
|
|
|
torch.nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64), ortho_init=ortho_init
|
|
|
|
),
|
|
|
|
act_fun,
|
|
|
|
layer_init(torch.nn.Linear(64, 64), ortho_init=ortho_init),
|
|
|
|
act_fun,
|
|
|
|
layer_init(torch.nn.Linear(64, envs.single_action_space.n), std=0.01, ortho_init=ortho_init),
|
|
|
|
)
|
|
|
|
self.avg_pg_loss = MeanMetric()
|
|
|
|
self.avg_value_loss = MeanMetric()
|
|
|
|
self.avg_ent_loss = MeanMetric()
|
|
|
|
|
|
|
|
def get_action(
|
|
|
|
self, x: torch.Tensor, action: torch.Tensor = None
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
logits = self.actor(x)
|
|
|
|
distribution = Categorical(logits=logits)
|
|
|
|
if action is None:
|
|
|
|
action = distribution.sample()
|
|
|
|
return action, distribution.log_prob(action), distribution.entropy()
|
|
|
|
|
|
|
|
def get_greedy_action(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
logits = self.actor(x)
|
|
|
|
probs = F.softmax(logits, dim=-1)
|
|
|
|
return torch.argmax(probs, dim=-1)
|
|
|
|
|
|
|
|
def get_value(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
return self.critic(x)
|
|
|
|
|
|
|
|
def get_action_and_value(
|
|
|
|
self, x: torch.Tensor, action: torch.Tensor = None
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
action, log_prob, entropy = self.get_action(x, action)
|
|
|
|
value = self.get_value(x)
|
|
|
|
return action, log_prob, entropy, value
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self, x: torch.Tensor, action: torch.Tensor = None
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
return self.get_action_and_value(x, action)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def estimate_returns_and_advantages(
|
|
|
|
self,
|
|
|
|
rewards: torch.Tensor,
|
|
|
|
values: torch.Tensor,
|
|
|
|
dones: torch.Tensor,
|
|
|
|
next_obs: torch.Tensor,
|
|
|
|
next_done: torch.Tensor,
|
|
|
|
num_steps: int,
|
|
|
|
gamma: float,
|
|
|
|
gae_lambda: float,
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
next_value = self.get_value(next_obs).reshape(1, -1)
|
|
|
|
advantages = torch.zeros_like(rewards)
|
|
|
|
lastgaelam = 0
|
|
|
|
for t in reversed(range(num_steps)):
|
|
|
|
if t == num_steps - 1:
|
|
|
|
nextnonterminal = 1.0 - next_done
|
|
|
|
nextvalues = next_value
|
|
|
|
else:
|
|
|
|
nextnonterminal = 1.0 - dones[t + 1]
|
|
|
|
nextvalues = values[t + 1]
|
|
|
|
delta = rewards[t] + gamma * nextvalues * nextnonterminal - values[t]
|
|
|
|
advantages[t] = lastgaelam = delta + gamma * gae_lambda * nextnonterminal * lastgaelam
|
|
|
|
returns = advantages + values
|
|
|
|
return returns, advantages
|
|
|
|
|
2023-01-30 14:11:43 +00:00
|
|
|
def training_step(self, batch: Dict[str, torch.Tensor]):
|
2023-01-27 11:28:25 +00:00
|
|
|
# Get actions and values given the current observations
|
|
|
|
_, newlogprob, entropy, newvalue = self(batch["obs"], batch["actions"].long())
|
|
|
|
logratio = newlogprob - batch["logprobs"]
|
|
|
|
ratio = logratio.exp()
|
|
|
|
|
|
|
|
# Policy loss
|
|
|
|
advantages = batch["advantages"]
|
|
|
|
if self.normalize_advantages:
|
|
|
|
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
|
|
|
|
|
|
|
pg_loss = policy_loss(batch["advantages"], ratio, self.clip_coef)
|
|
|
|
|
|
|
|
# Value loss
|
|
|
|
v_loss = value_loss(
|
|
|
|
newvalue,
|
|
|
|
batch["values"],
|
|
|
|
batch["returns"],
|
|
|
|
self.clip_coef,
|
|
|
|
self.clip_vloss,
|
|
|
|
self.vf_coef,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Entropy loss
|
|
|
|
ent_loss = entropy_loss(entropy, self.ent_coef)
|
|
|
|
|
2023-01-30 14:11:43 +00:00
|
|
|
# Update metrics
|
|
|
|
self.avg_pg_loss(pg_loss)
|
|
|
|
self.avg_value_loss(v_loss)
|
|
|
|
self.avg_ent_loss(ent_loss)
|
|
|
|
|
|
|
|
# Overall loss
|
|
|
|
return pg_loss + ent_loss + v_loss
|
|
|
|
|
|
|
|
def on_train_epoch_end(self, global_step: int) -> None:
|
|
|
|
# Log metrics and reset their internal state
|
2023-01-27 11:28:25 +00:00
|
|
|
self.logger.log_metrics(
|
|
|
|
{
|
2023-01-30 14:11:43 +00:00
|
|
|
"Loss/policy_loss": self.avg_pg_loss.compute(),
|
|
|
|
"Loss/value_loss": self.avg_value_loss.compute(),
|
|
|
|
"Loss/entropy_loss": self.avg_ent_loss.compute(),
|
2023-01-27 11:28:25 +00:00
|
|
|
},
|
|
|
|
global_step,
|
|
|
|
)
|
2023-01-30 14:11:43 +00:00
|
|
|
self.avg_pg_loss.reset()
|
|
|
|
self.avg_value_loss.reset()
|
|
|
|
self.avg_ent_loss.reset()
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
def configure_optimizers(self, lr: float):
|
2023-01-30 14:11:43 +00:00
|
|
|
return torch.optim.Adam(self.parameters(), lr=lr, eps=1e-4)
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
|
|
|
|
def train(
|
|
|
|
fabric: Fabric,
|
|
|
|
agent: PPOLightningAgent,
|
|
|
|
optimizer: torch.optim.Optimizer,
|
|
|
|
data: Dict[str, torch.Tensor],
|
|
|
|
global_step: int,
|
|
|
|
args: argparse.Namespace,
|
|
|
|
):
|
|
|
|
sampler = DistributedSampler(
|
|
|
|
list(range(data["obs"].shape[0])),
|
|
|
|
num_replicas=fabric.world_size,
|
|
|
|
rank=fabric.global_rank,
|
|
|
|
shuffle=True,
|
|
|
|
seed=args.seed,
|
|
|
|
)
|
|
|
|
sampler = BatchSampler(sampler, batch_size=args.per_rank_batch_size, drop_last=False)
|
|
|
|
|
|
|
|
for epoch in range(args.update_epochs):
|
|
|
|
sampler.sampler.set_epoch(epoch)
|
|
|
|
for batch_idxes in sampler:
|
2023-01-30 14:11:43 +00:00
|
|
|
loss = agent.training_step({k: v[batch_idxes] for k, v in data.items()})
|
2023-01-27 11:28:25 +00:00
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
fabric.backward(loss)
|
|
|
|
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
|
|
|
optimizer.step()
|
2023-01-30 14:11:43 +00:00
|
|
|
agent.on_train_epoch_end(global_step)
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def test(fabric: Fabric, agent: PPOLightningAgent, logger: TensorBoardLogger, args: argparse.Namespace):
|
|
|
|
device = fabric.device
|
|
|
|
env = make_env(
|
2023-01-30 14:11:43 +00:00
|
|
|
args.env_id, args.seed + fabric.global_rank, fabric.global_rank, args.capture_video, logger.log_dir, "test"
|
2023-01-27 11:28:25 +00:00
|
|
|
)()
|
|
|
|
step = 0
|
|
|
|
done = False
|
|
|
|
cumulative_rew = 0
|
|
|
|
next_obs = torch.Tensor(env.reset(seed=args.seed)[0]).to(device)
|
|
|
|
while not done:
|
|
|
|
# Act greedly through the environment
|
|
|
|
action = agent.get_greedy_action(next_obs)
|
|
|
|
|
|
|
|
# Single environment step
|
|
|
|
next_obs, reward, done, truncated, info = env.step(action.cpu().numpy())
|
|
|
|
done = np.logical_or(done, truncated)
|
|
|
|
cumulative_rew += reward
|
|
|
|
next_obs = torch.Tensor(next_obs).to(device)
|
|
|
|
step += 1
|
|
|
|
fabric.log("Test/cumulative_reward", cumulative_rew, 0)
|
|
|
|
env.close()
|
|
|
|
|
|
|
|
|
|
|
|
def main(args: argparse.Namespace):
|
|
|
|
run_name = f"{args.env_id}_{args.exp_name}_{args.seed}_{int(time.time())}"
|
2023-01-30 14:11:43 +00:00
|
|
|
logger = TensorBoardLogger(root_dir=os.path.join("logs", "fabric_logs"), name=run_name)
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
# Initialize Fabric
|
|
|
|
fabric = Fabric(loggers=logger)
|
|
|
|
rank = fabric.global_rank
|
|
|
|
world_size = fabric.world_size
|
|
|
|
device = fabric.device
|
|
|
|
fabric.seed_everything(args.seed)
|
2023-01-30 14:11:43 +00:00
|
|
|
torch.backends.cudnn.deterministic = args.torch_deterministic
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
# Log hyperparameters
|
|
|
|
fabric.logger.experiment.add_text(
|
|
|
|
"hyperparameters",
|
|
|
|
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
|
|
|
)
|
|
|
|
|
|
|
|
# Environment setup
|
|
|
|
envs = gym.vector.SyncVectorEnv(
|
|
|
|
[
|
2023-01-30 14:11:43 +00:00
|
|
|
make_env(args.env_id, args.seed + rank, rank, args.capture_video, logger.log_dir, "train")
|
2023-01-27 11:28:25 +00:00
|
|
|
for _ in range(args.per_rank_num_envs)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
|
|
|
|
|
|
|
|
# Define the agent and the optimizer and setup them with Fabric
|
|
|
|
agent: PPOLightningAgent = PPOLightningAgent(
|
|
|
|
envs,
|
|
|
|
act_fun=args.activation_function,
|
|
|
|
vf_coef=args.vf_coef,
|
|
|
|
ent_coef=args.ent_coef,
|
|
|
|
clip_coef=args.clip_coef,
|
|
|
|
clip_vloss=args.clip_vloss,
|
|
|
|
ortho_init=args.ortho_init,
|
|
|
|
normalize_advantages=args.normalize_advantages,
|
|
|
|
)
|
|
|
|
optimizer = agent.configure_optimizers(args.learning_rate)
|
|
|
|
agent, optimizer = fabric.setup(agent, optimizer)
|
|
|
|
|
2023-01-30 14:11:43 +00:00
|
|
|
# Player metrics
|
|
|
|
rew_avg = torchmetrics.MeanMetric().to(device)
|
|
|
|
ep_len_avg = torchmetrics.MeanMetric().to(device)
|
|
|
|
|
2023-01-27 11:28:25 +00:00
|
|
|
# Local data
|
|
|
|
obs = torch.zeros((args.num_steps, args.per_rank_num_envs) + envs.single_observation_space.shape, device=device)
|
|
|
|
actions = torch.zeros((args.num_steps, args.per_rank_num_envs) + envs.single_action_space.shape, device=device)
|
|
|
|
logprobs = torch.zeros((args.num_steps, args.per_rank_num_envs), device=device)
|
|
|
|
rewards = torch.zeros((args.num_steps, args.per_rank_num_envs), device=device)
|
|
|
|
dones = torch.zeros((args.num_steps, args.per_rank_num_envs), device=device)
|
|
|
|
values = torch.zeros((args.num_steps, args.per_rank_num_envs), device=device)
|
|
|
|
|
|
|
|
# Global variables
|
|
|
|
global_step = 0
|
|
|
|
start_time = time.time()
|
|
|
|
single_global_rollout = int(args.per_rank_num_envs * args.num_steps * world_size)
|
|
|
|
num_updates = args.total_timesteps // single_global_rollout
|
|
|
|
|
|
|
|
# Get the first environment observation and start the optimization
|
|
|
|
next_obs = torch.Tensor(envs.reset(seed=args.seed)[0]).to(device)
|
|
|
|
next_done = torch.zeros(args.per_rank_num_envs, device=device)
|
|
|
|
for update in range(1, num_updates + 1):
|
|
|
|
# Learning rate annealing
|
|
|
|
fabric.log("Info/learning_rate", optimizer.param_groups[0]["lr"], global_step)
|
|
|
|
if args.anneal_lr:
|
|
|
|
frac = 1.0 - (update - 1.0) / num_updates
|
|
|
|
lrnow = frac * args.learning_rate
|
|
|
|
optimizer.param_groups[0]["lr"] = lrnow
|
|
|
|
|
|
|
|
for step in range(0, args.num_steps):
|
|
|
|
global_step += args.per_rank_num_envs * world_size
|
|
|
|
obs[step] = next_obs
|
|
|
|
dones[step] = next_done
|
|
|
|
|
|
|
|
# Sample an action given the observation received by the environment
|
|
|
|
with torch.no_grad():
|
|
|
|
action, logprob, _, value = agent.get_action_and_value(next_obs)
|
|
|
|
values[step] = value.flatten()
|
|
|
|
actions[step] = action
|
|
|
|
logprobs[step] = logprob
|
|
|
|
|
|
|
|
# Single environment step
|
|
|
|
next_obs, reward, done, truncated, info = envs.step(action.cpu().numpy())
|
|
|
|
done = np.logical_or(done, truncated)
|
|
|
|
rewards[step] = torch.tensor(reward, device=device).view(-1)
|
|
|
|
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
|
|
|
|
|
|
|
if "final_info" in info:
|
|
|
|
for agent_id, agent_final_info in enumerate(info["final_info"]):
|
|
|
|
if agent_final_info is not None and "episode" in agent_final_info:
|
2023-01-30 14:11:43 +00:00
|
|
|
if agent_id == 0:
|
|
|
|
fabric.print(
|
|
|
|
f"global_step={global_step}, reward_agent_0={agent_final_info['episode']['r'][0]}"
|
|
|
|
)
|
|
|
|
rew_avg(agent_final_info["episode"]["r"][0])
|
|
|
|
ep_len_avg(agent_final_info["episode"]["l"][0])
|
|
|
|
|
|
|
|
# Sync the metrics
|
|
|
|
fabric.log("Rewards/rew_avg", rew_avg.compute(), global_step)
|
|
|
|
fabric.log("Game/ep_len_avg", ep_len_avg.compute(), global_step)
|
|
|
|
rew_avg.reset()
|
|
|
|
ep_len_avg.reset()
|
2023-01-27 11:28:25 +00:00
|
|
|
|
|
|
|
# Estimate returns with GAE (https://arxiv.org/abs/1506.02438)
|
|
|
|
returns, advantages = agent.estimate_returns_and_advantages(
|
|
|
|
rewards, values, dones, next_obs, next_done, args.num_steps, args.gamma, args.gae_lambda
|
|
|
|
)
|
|
|
|
|
|
|
|
# Flatten the batch
|
|
|
|
local_data = {
|
|
|
|
"obs": obs.reshape((-1,) + envs.single_observation_space.shape),
|
|
|
|
"logprobs": logprobs.reshape(-1),
|
|
|
|
"actions": actions.reshape((-1,) + envs.single_action_space.shape),
|
|
|
|
"advantages": advantages.reshape(-1),
|
|
|
|
"returns": returns.reshape(-1),
|
|
|
|
"values": values.reshape(-1),
|
|
|
|
}
|
|
|
|
|
|
|
|
# Gather all the tensors from all the world and reshape them
|
|
|
|
gathered_data = fabric.all_gather(local_data)
|
|
|
|
for k, v in gathered_data.items():
|
|
|
|
if k == "obs":
|
|
|
|
gathered_data[k] = v.reshape((-1,) + envs.single_observation_space.shape)
|
|
|
|
elif k == "actions":
|
|
|
|
gathered_data[k] = v.reshape((-1,) + envs.single_action_space.shape)
|
|
|
|
else:
|
|
|
|
gathered_data[k] = v.reshape(-1)
|
|
|
|
|
|
|
|
# Train the agent
|
|
|
|
train(fabric, agent, optimizer, gathered_data, global_step, args)
|
|
|
|
fabric.log("Time/step_per_second", int(global_step / (time.time() - start_time)), global_step)
|
|
|
|
|
|
|
|
envs.close()
|
|
|
|
if fabric.is_global_zero:
|
|
|
|
test(fabric, agent, logger, args)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
args = parse_args()
|
|
|
|
main(args)
|