2020-10-13 11:18:07 +00:00
|
|
|
# Copyright The PyTorch Lightning team.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
2020-10-20 12:33:46 +00:00
|
|
|
import inspect
|
2021-01-08 17:05:22 +00:00
|
|
|
import os
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
from unittest import mock
|
|
|
|
from unittest.mock import PropertyMock
|
2020-06-03 01:45:19 +00:00
|
|
|
|
2020-04-16 16:01:41 +00:00
|
|
|
import pytest
|
2020-05-24 22:59:08 +00:00
|
|
|
import torch
|
2020-04-16 16:01:41 +00:00
|
|
|
|
2021-02-05 23:33:12 +00:00
|
|
|
from pytorch_lightning import Callback, Trainer
|
2021-01-12 00:36:48 +00:00
|
|
|
from pytorch_lightning.trainer.states import TrainerState
|
2021-02-09 10:10:52 +00:00
|
|
|
from tests.helpers import BoringModel, RandomDataset
|
2021-03-02 08:03:32 +00:00
|
|
|
from tests.helpers.skipif import RunIf
|
2020-04-16 16:01:41 +00:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('max_steps', [1, 2, 3])
|
2020-06-29 01:36:46 +00:00
|
|
|
def test_on_before_zero_grad_called(tmpdir, max_steps):
|
2020-04-16 16:01:41 +00:00
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class CurrentTestModel(BoringModel):
|
2020-04-16 16:01:41 +00:00
|
|
|
on_before_zero_grad_called = 0
|
|
|
|
|
|
|
|
def on_before_zero_grad(self, optimizer):
|
|
|
|
self.on_before_zero_grad_called += 1
|
|
|
|
|
2020-05-10 17:15:28 +00:00
|
|
|
model = CurrentTestModel()
|
2020-04-16 16:01:41 +00:00
|
|
|
|
|
|
|
trainer = Trainer(
|
2020-06-29 01:36:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
2020-04-16 16:01:41 +00:00
|
|
|
max_steps=max_steps,
|
2020-06-29 01:36:46 +00:00
|
|
|
max_epochs=2,
|
2020-04-16 16:01:41 +00:00
|
|
|
)
|
|
|
|
assert 0 == model.on_before_zero_grad_called
|
|
|
|
trainer.fit(model)
|
|
|
|
assert max_steps == model.on_before_zero_grad_called
|
|
|
|
|
|
|
|
model.on_before_zero_grad_called = 0
|
|
|
|
trainer.test(model)
|
|
|
|
assert 0 == model.on_before_zero_grad_called
|
2020-05-24 22:59:08 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_training_epoch_end_metrics_collection(tmpdir):
|
|
|
|
""" Test that progress bar metrics also get collected at the end of an epoch. """
|
|
|
|
num_epochs = 3
|
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class CurrentModel(BoringModel):
|
2020-05-24 22:59:08 +00:00
|
|
|
|
|
|
|
def training_step(self, *args, **kwargs):
|
|
|
|
output = super().training_step(*args, **kwargs)
|
2021-02-11 14:32:07 +00:00
|
|
|
self.log_dict({'step_metric': torch.tensor(-1), 'shared_metric': 100}, logger=False, prog_bar=True)
|
2020-05-24 22:59:08 +00:00
|
|
|
return output
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs):
|
|
|
|
epoch = self.current_epoch
|
|
|
|
# both scalar tensors and Python numbers are accepted
|
2021-02-11 14:32:07 +00:00
|
|
|
self.log_dict(
|
|
|
|
{
|
|
|
|
f'epoch_metric_{epoch}': torch.tensor(epoch),
|
|
|
|
'shared_metric': 111
|
|
|
|
},
|
|
|
|
logger=False,
|
|
|
|
prog_bar=True,
|
|
|
|
)
|
2020-05-24 22:59:08 +00:00
|
|
|
|
|
|
|
model = CurrentModel()
|
|
|
|
trainer = Trainer(
|
|
|
|
max_epochs=num_epochs,
|
|
|
|
default_root_dir=tmpdir,
|
2020-06-19 03:30:16 +00:00
|
|
|
overfit_batches=2,
|
2020-05-24 22:59:08 +00:00
|
|
|
)
|
2021-01-12 00:36:48 +00:00
|
|
|
trainer.fit(model)
|
|
|
|
assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"
|
2020-05-24 22:59:08 +00:00
|
|
|
metrics = trainer.progress_bar_dict
|
|
|
|
|
|
|
|
# metrics added in training step should be unchanged by epoch end method
|
|
|
|
assert metrics['step_metric'] == -1
|
|
|
|
# a metric shared in both methods gets overwritten by epoch_end
|
|
|
|
assert metrics['shared_metric'] == 111
|
|
|
|
# metrics are kept after each epoch
|
2020-06-20 03:39:53 +00:00
|
|
|
for i in range(num_epochs):
|
2020-05-24 22:59:08 +00:00
|
|
|
assert metrics[f'epoch_metric_{i}'] == i
|
2020-06-03 01:45:19 +00:00
|
|
|
|
|
|
|
|
2021-01-26 13:01:46 +00:00
|
|
|
def test_training_epoch_end_metrics_collection_on_override(tmpdir):
|
|
|
|
""" Test that batch end metrics are collected when training_epoch_end is overridden at the end of an epoch. """
|
|
|
|
|
|
|
|
class LoggingCallback(Callback):
|
|
|
|
|
2021-02-04 17:56:45 +00:00
|
|
|
def on_train_epoch_start(self, trainer, pl_module):
|
2021-01-26 13:01:46 +00:00
|
|
|
self.len_outputs = 0
|
|
|
|
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module, outputs):
|
|
|
|
self.len_outputs = len(outputs[0])
|
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class OverriddenModel(BoringModel):
|
2021-01-26 13:01:46 +00:00
|
|
|
|
|
|
|
def on_train_epoch_start(self):
|
|
|
|
self.num_train_batches = 0
|
|
|
|
|
|
|
|
def training_epoch_end(self, outputs): # Overridden
|
|
|
|
return
|
|
|
|
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
|
|
self.num_train_batches += 1
|
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class NotOverriddenModel(BoringModel):
|
2021-01-26 13:01:46 +00:00
|
|
|
|
|
|
|
def on_train_epoch_start(self):
|
|
|
|
self.num_train_batches = 0
|
|
|
|
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
|
|
self.num_train_batches += 1
|
|
|
|
|
|
|
|
overridden_model = OverriddenModel()
|
|
|
|
not_overridden_model = NotOverriddenModel()
|
2021-02-11 14:32:07 +00:00
|
|
|
not_overridden_model.training_epoch_end = None
|
2021-01-26 13:01:46 +00:00
|
|
|
|
|
|
|
callback = LoggingCallback()
|
|
|
|
trainer = Trainer(
|
2021-02-04 17:56:45 +00:00
|
|
|
max_epochs=1,
|
2021-01-26 13:01:46 +00:00
|
|
|
default_root_dir=tmpdir,
|
|
|
|
overfit_batches=2,
|
|
|
|
callbacks=[callback],
|
|
|
|
)
|
|
|
|
|
2021-02-04 17:56:45 +00:00
|
|
|
trainer.fit(overridden_model)
|
|
|
|
# outputs from on_train_batch_end should be accessible in on_train_epoch_end hook
|
|
|
|
# if training_epoch_end is overridden
|
2021-01-26 13:01:46 +00:00
|
|
|
assert callback.len_outputs == overridden_model.num_train_batches
|
|
|
|
|
2021-02-04 17:56:45 +00:00
|
|
|
trainer.fit(not_overridden_model)
|
2021-01-26 13:01:46 +00:00
|
|
|
# outputs from on_train_batch_end should be empty
|
2021-02-04 17:56:45 +00:00
|
|
|
assert callback.len_outputs == 0
|
2021-01-26 13:01:46 +00:00
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=1)
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
@mock.patch("pytorch_lightning.accelerators.accelerator.Accelerator.lightning_module", new_callable=PropertyMock)
|
2021-02-18 11:58:12 +00:00
|
|
|
def test_apply_batch_transfer_handler(model_getter_mock):
|
|
|
|
expected_device = torch.device('cuda', 0)
|
2020-06-03 01:45:19 +00:00
|
|
|
|
|
|
|
class CustomBatch:
|
|
|
|
|
|
|
|
def __init__(self, data):
|
|
|
|
self.samples = data[0]
|
|
|
|
self.targets = data[1]
|
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class CurrentTestModel(BoringModel):
|
2021-02-18 11:58:12 +00:00
|
|
|
rank = 0
|
|
|
|
transfer_batch_to_device_hook_rank = None
|
|
|
|
on_before_batch_transfer_hook_rank = None
|
|
|
|
on_after_batch_transfer_hook_rank = None
|
|
|
|
|
2021-02-18 19:24:19 +00:00
|
|
|
def on_before_batch_transfer(self, batch, dataloader_idx):
|
2021-02-18 11:58:12 +00:00
|
|
|
self.on_before_batch_transfer_hook_rank = self.rank
|
|
|
|
self.rank += 1
|
|
|
|
batch.samples += 1
|
|
|
|
return batch
|
|
|
|
|
2021-02-18 19:24:19 +00:00
|
|
|
def on_after_batch_transfer(self, batch, dataloader_idx):
|
2021-02-18 11:58:12 +00:00
|
|
|
assert batch.samples.device == batch.targets.device == expected_device
|
|
|
|
self.on_after_batch_transfer_hook_rank = self.rank
|
|
|
|
self.rank += 1
|
|
|
|
batch.targets *= 2
|
|
|
|
return batch
|
|
|
|
|
|
|
|
def transfer_batch_to_device(self, batch, device):
|
|
|
|
self.transfer_batch_to_device_hook_rank = self.rank
|
|
|
|
self.rank += 1
|
|
|
|
batch.samples = batch.samples.to(device)
|
|
|
|
batch.targets = batch.targets.to(device)
|
|
|
|
return batch
|
2020-06-03 01:45:19 +00:00
|
|
|
|
|
|
|
model = CurrentTestModel()
|
2021-02-11 14:32:07 +00:00
|
|
|
batch = CustomBatch((torch.zeros(5, 32), torch.ones(5, 1, dtype=torch.long)))
|
2020-06-03 01:45:19 +00:00
|
|
|
|
2020-09-09 02:14:17 +00:00
|
|
|
trainer = Trainer(gpus=1)
|
2020-06-03 01:45:19 +00:00
|
|
|
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
|
2021-02-18 11:58:12 +00:00
|
|
|
|
PoC: Accelerator refactor (#5743)
* restoring the result from subprocess
* fix queue.get() order for results
* add missing "block_backward_sync" context manager
* add missing "block_backward_sync" context manager
* fix sync_batchnorm
* fix supported gpu-ids for tuple
* fix clip gradients and inf recursion
* accelerator selection: added cluster_environment plugin
* fix torchelastic test
* fix reduce early stopping decision for DDP
* fix tests: callbacks, conversion to lightning optimizer
* fix lightning optimizer does not pickle
* fix setting benchmark and deterministic option
* fix slurm amp test
* fix prepare_data test and determine node_rank
* fix retrieving last path when testing
* remove obsolete plugin argument
* fix test: test_trainer_config
* fix torchscript tests
* fix trainer.model access
* move properties
* fix test_transfer_batch_hook
* fix auto_select_gpus
* fix omegaconf test
* fix test that needs to simulate slurm ddp
* add horovod plugin
* fix test with named arguments
* clean up whitespace
* fix datamodules test
* remove old accelerators
* fix naming
* move old plugins
* move to plugins
* create precision subpackage
* create training_type subpackage
* fix all new import errors
* fix wrong arguments order passed to test
* fix LR finder
* Added sharded training type and amp plugin
* Move clip grad to precision plugin
* Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically
* Fix import issue, attempting to fix tests
* Fix initial test
* Reflect hook logic from master, should wrap model after move to device
* Optional state consolidation, since master has optimizers not wrapped
* change attribute for instance test
* reset optimizers
optimizers are not used in main process, so state would be wrong.
* legacy
* imports in accel
* legacy2
* trainer imports
* fix import errors after rebase
* move hook to new setup location
* provide unwrapping logic
* fix trainer callback system
* added ddp2 implementation
* fix imports .legacy
* move plugins
* restore legacy
* drop test.py from root
* add tpu accelerator and plugins
* fixes
* fix lightning optimizer merge
* reset bugreportmodel
* unwrapping
* step routing forward
* model access
* unwrap
* opt
* integrate distrib_type
* sync changes
* sync
* fixes
* add forgotten generators
* add missing logic
* update
* import
* missed imports
* import fixes
* isort
* mv f
* changelog
* format
* move helper to parallel plugin
* d
* add world size
* clean up
* duplicate
* activate ddp_sharded and tpu
* set nvidia flags
* remove unused colab var
* use_tpu <-> on_tpu attrs
* make some ddp_cpu and clusterplugin tests pass
* Ref/accelerator connector (#5742)
* final cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* connector cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* trainer cleanup
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* accelerator cleanup + missing logic in accelerator connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add missing changes to callbacks
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* reflect accelerator changes to lightning module
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* clean cluster envs
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* cleanup plugins
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* add broadcasting
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* yapf
* remove plugin connector
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* plugins
* manual optimization
* update optimizer routing
* add rank to torchelastic
* fix memory mixed precision
* setstate on trainer for pickling in ddp spawn
* add predict method
* add back commented accelerator code
* adapt test for sync_batch_norm to new plugin
* fix deprecated tests
* fix ddp cpu choice when no num_processes are given
* yapf format
* skip a memory test that cannot pass anymore
* fix pickle error in spawn plugin
* x
* avoid
* x
* fix cyclic import in docs build
* add support for sharded
* update typing
* add sharded and sharded_spawn to distributed types
* make unwrap model default
* refactor LightningShardedDataParallel similar to LightningDistributedDataParallel
* update sharded spawn to reflect changes
* update sharded to reflect changes
* Merge 1.1.5 changes
* fix merge
* fix merge
* yapf isort
* fix merge
* yapf isort
* fix indentation in test
* copy over reinit scheduler implementation from dev1.2
* fix apex tracking calls with dev_debugger
* reduce diff to dev1.2, clean up
* fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu
* sort plugin tests legacy/new
* fix error handling for amp on cpu
* fix merge
fix merge
fix merge
* [Feat] Resolve manual_backward (#5837)
* resolve manual_backward
* resolve flake8
* update
* resolve for ddp_spawn
* resolve flake8
* resolve flake8
* resolve flake8
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* fix tests/accelerator tests on cpu
* [BugFix] Resolve manual optimization (#5852)
* resolve manual_optimization
* update
* update
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856)
* resovle a bug
* Accelerator refactor sharded rpc (#5854)
* rpc branch
* merge
* update handling of rpc
* make devices etc. Optional in RPC
* set devices etc. later if necessary
* remove devices from sequential
* make devices optional in rpc
* fix import
* uncomment everything
* fix cluster selection
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
* resolve bug
* fix assert in rpc test
* resolve a test
* fix docs compilation
* accelerator refactor - fix for sharded parity test (#5866)
* fix memory issue with ddp_spawn
* x
x
x
x
x
x
x
x
x
* x
* Remove DDP2 as this does not apply
* Add missing pre optimizer hook to ensure lambda closure is called
* fix apex docstring
* [accelerator][BugFix] Resolve some test for 1 gpu (#5863)
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* update
* update
* revert init
* resolve a bug
* update
* resolve flake8
* update
* update
* update
* revert init
* update
* resolve flake8
* update
* update
* update
* update
* update
* all_gather
* update
* make plugins work, add misconfig for RPC
* update
* update
* remove breaking test
* resolve some tests
* resolve flake8
* revert to ddp_spawn
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de>
* yapf isort
* resolve flake8
* fix apex doctests
* fix apex doctests 2
* resolve docs
* update drone
* clean env
* update
* update
* update
* update
* merge
* Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881)
* Fix RPC related tests, clean out old API, update for new accelerator API
* Move tests out of legacy folder, update paths and names
* Update test_remove_1-4.py
* Expose properties for tpu cores/gpus/num_gpus
* Add root GPU property
* Move properties to properties.py
* move tests that were previously in drone
* Fix root GPU property (#5908)
* Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator
* Add missing tests back
* fix best model path transfer when no checkpoint callback available
* Fix setup hook order [wip] (#5858)
* Call trainer setup hook before accelerator setup
* Add test case
* add new test
* typo
* fix callback order in test
Co-authored-by: tchaton <thomas@grid.ai>
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* rename ddp sequential -> rpc sequential for special test
* revert
* fix stupid merge problem
* Use property in connector for sampler (#5913)
* merge the import conflicts
* fix spawning of processes in slurm
* [wip] Fix some bugs for TPU [skip ci] (#5878)
* fixed for single tpu
* fixed spawn
* fixed spawn
* update
* update
* wip
* resolve bugs
* resolve bug
* update on comment
* removed decorator
* resolve comments
* set to 4
* update
* update
* need cleaning
* update
* update
* update
* resolve flake8
* resolve bugs
* exclude broadcast
* resolve bugs
* change test
* update
* update
* skip if meet fails
* properly raise trace
* update
* add catch
* wrap test
* resolve typo
* update
* typo
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
* resolve some tests
* update
* fix imports
* update
* resolve flake8
* update azure pipeline
* skip a sharded test on cpu that requires a gpu
* resolve tpus
* resolve bug
* resolve flake8
* update
* updat utils
* revert permission change on files
* suggestions from carlos
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting changes
* remove incomplete comment
* Update pytorch_lightning/accelerators/__init__.py
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
* remove unrelated formatting change
* add types
* warn 1.7 ddp manual backward only if ddp kwarg unset
* yapf + isort
* pep8 unused imports
* fix cyclic import in docs
* Apply suggestions from code review
* typer in accelerator.py
* typo
* Apply suggestions from code review
* formatting
* update on comments
* update typo
* Update pytorch_lightning/trainer/properties.py
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
* update
* suggestion from code review
* suggestion from code review
Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com>
Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
Co-authored-by: root <root@ip-172-31-88-60.ec2.internal>
Co-authored-by: Lezwon Castelino <lezwon@gmail.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
|
|
|
model_getter_mock.return_value = model
|
2021-02-18 15:54:12 +00:00
|
|
|
batch_gpu = trainer.accelerator.batch_to_device(batch, expected_device)
|
2021-02-18 11:58:12 +00:00
|
|
|
|
|
|
|
assert model.on_before_batch_transfer_hook_rank == 0
|
|
|
|
assert model.transfer_batch_to_device_hook_rank == 1
|
|
|
|
assert model.on_after_batch_transfer_hook_rank == 2
|
|
|
|
assert batch_gpu.samples.device == batch_gpu.targets.device == expected_device
|
|
|
|
assert torch.allclose(batch_gpu.samples.cpu(), torch.ones(5, 32))
|
|
|
|
assert torch.allclose(batch_gpu.targets.cpu(), torch.ones(5, 1, dtype=torch.long) * 2)
|
2020-10-02 19:46:46 +00:00
|
|
|
|
|
|
|
|
2021-03-02 08:03:32 +00:00
|
|
|
@RunIf(min_gpus=2)
|
2021-02-06 11:07:26 +00:00
|
|
|
@pytest.mark.skipif(
|
|
|
|
not os.getenv("PL_RUNNING_SPECIAL_TESTS", '0') == '1', reason="test should be run outside of pytest"
|
|
|
|
)
|
2021-01-08 17:05:22 +00:00
|
|
|
def test_transfer_batch_hook_ddp(tmpdir):
|
|
|
|
"""
|
|
|
|
Test custom data are properly moved to the right device using ddp
|
|
|
|
"""
|
|
|
|
|
|
|
|
class CustomBatch:
|
|
|
|
|
|
|
|
def __init__(self, data):
|
|
|
|
self.samples = data[0]
|
|
|
|
|
|
|
|
def to(self, device, **kwargs):
|
|
|
|
self.samples = self.samples.to(device, **kwargs)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def collate_fn(batch):
|
|
|
|
return CustomBatch(batch)
|
|
|
|
|
|
|
|
class TestModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2021-01-08 17:05:22 +00:00
|
|
|
def training_step(self, batch, batch_idx):
|
|
|
|
assert batch.samples.device == self.device
|
|
|
|
assert isinstance(batch_idx, int)
|
|
|
|
|
|
|
|
def train_dataloader(self):
|
|
|
|
return torch.utils.data.DataLoader(RandomDataset(32, 64), collate_fn=collate_fn)
|
|
|
|
|
|
|
|
model = TestModel()
|
|
|
|
model.validation_step = None
|
|
|
|
model.training_epoch_end = None
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
limit_train_batches=2,
|
|
|
|
limit_val_batches=0,
|
|
|
|
max_epochs=1,
|
|
|
|
weights_summary=None,
|
|
|
|
accelerator="ddp",
|
|
|
|
gpus=2,
|
|
|
|
)
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
2021-02-06 11:07:26 +00:00
|
|
|
@pytest.mark.parametrize('max_epochs,batch_idx_', [(2, 5), (3, 8), (4, 12)])
|
2020-10-02 19:46:46 +00:00
|
|
|
def test_on_train_batch_start_hook(max_epochs, batch_idx_):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2021-02-11 14:32:07 +00:00
|
|
|
class CurrentModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-10-02 19:46:46 +00:00
|
|
|
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
|
|
if batch_idx == batch_idx_:
|
|
|
|
return -1
|
|
|
|
|
|
|
|
model = CurrentModel()
|
|
|
|
trainer = Trainer(max_epochs=max_epochs)
|
|
|
|
trainer.fit(model)
|
|
|
|
if batch_idx_ > len(model.val_dataloader()) - 1:
|
|
|
|
assert trainer.batch_idx == len(model.val_dataloader()) - 1
|
|
|
|
assert trainer.global_step == len(model.val_dataloader()) * max_epochs
|
|
|
|
else:
|
|
|
|
assert trainer.batch_idx == batch_idx_
|
|
|
|
assert trainer.global_step == (batch_idx_ + 1) * max_epochs
|
2020-10-20 12:33:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_trainer_model_hook_system(tmpdir):
|
|
|
|
"""Test the hooks system."""
|
|
|
|
|
|
|
|
class HookedModel(BoringModel):
|
2021-02-06 11:07:26 +00:00
|
|
|
|
2020-10-20 12:33:46 +00:00
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.called = []
|
|
|
|
|
|
|
|
def on_after_backward(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_after_backward()
|
|
|
|
|
|
|
|
def on_before_zero_grad(self, optimizer):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_before_zero_grad(optimizer)
|
|
|
|
|
|
|
|
def on_epoch_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_epoch_start()
|
|
|
|
|
|
|
|
def on_epoch_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_epoch_end()
|
|
|
|
|
|
|
|
def on_fit_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_fit_start()
|
|
|
|
|
|
|
|
def on_fit_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_fit_end()
|
|
|
|
|
|
|
|
def on_hpc_load(self, checkpoint):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_hpc_load(checkpoint)
|
|
|
|
|
|
|
|
def on_hpc_save(self, checkpoint):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_hpc_save(checkpoint)
|
|
|
|
|
|
|
|
def on_load_checkpoint(self, checkpoint):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_load_checkpoint(checkpoint)
|
|
|
|
|
|
|
|
def on_save_checkpoint(self, checkpoint):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_save_checkpoint(checkpoint)
|
|
|
|
|
|
|
|
def on_pretrain_routine_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_pretrain_routine_start()
|
|
|
|
|
|
|
|
def on_pretrain_routine_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_pretrain_routine_end()
|
|
|
|
|
|
|
|
def on_train_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_start()
|
|
|
|
|
|
|
|
def on_train_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_end()
|
|
|
|
|
|
|
|
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_batch_start(batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_train_epoch_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_epoch_start()
|
|
|
|
|
|
|
|
def on_train_epoch_end(self, outputs):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_train_epoch_end(outputs)
|
|
|
|
|
|
|
|
def on_validation_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_start()
|
|
|
|
|
|
|
|
def on_validation_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_end()
|
|
|
|
|
|
|
|
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_batch_start(batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_validation_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_validation_epoch_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_epoch_start()
|
|
|
|
|
|
|
|
def on_validation_epoch_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_epoch_end()
|
|
|
|
|
|
|
|
def on_test_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_start()
|
|
|
|
|
|
|
|
def on_test_batch_start(self, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_batch_start(batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_test_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_batch_end(outputs, batch, batch_idx, dataloader_idx)
|
|
|
|
|
|
|
|
def on_test_epoch_start(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_epoch_start()
|
|
|
|
|
|
|
|
def on_test_epoch_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_epoch_end()
|
|
|
|
|
|
|
|
def on_validation_model_eval(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_model_eval()
|
|
|
|
|
|
|
|
def on_validation_model_train(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_validation_model_train()
|
|
|
|
|
|
|
|
def on_test_model_eval(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_model_eval()
|
|
|
|
|
|
|
|
def on_test_model_train(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_model_train()
|
|
|
|
|
2021-01-13 06:09:47 +00:00
|
|
|
def on_test_end(self):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().on_test_end()
|
|
|
|
|
|
|
|
def teardown(self, stage: str):
|
|
|
|
self.called.append(inspect.currentframe().f_code.co_name)
|
|
|
|
super().teardown(stage)
|
|
|
|
|
2020-10-20 12:33:46 +00:00
|
|
|
model = HookedModel()
|
|
|
|
|
|
|
|
assert model.called == []
|
|
|
|
|
|
|
|
# fit model
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
limit_val_batches=1,
|
|
|
|
limit_train_batches=2,
|
|
|
|
limit_test_batches=1,
|
|
|
|
progress_bar_refresh_rate=0,
|
|
|
|
)
|
|
|
|
|
|
|
|
assert model.called == []
|
|
|
|
|
|
|
|
trainer.fit(model)
|
|
|
|
|
2020-11-05 22:27:04 +00:00
|
|
|
expected = [
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_fit_start',
|
|
|
|
'on_pretrain_routine_start',
|
|
|
|
'on_pretrain_routine_end',
|
|
|
|
'on_validation_model_eval',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_validation_start',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_validation_epoch_start',
|
|
|
|
'on_validation_batch_start',
|
|
|
|
'on_validation_batch_end',
|
|
|
|
'on_validation_epoch_end',
|
2021-02-17 17:21:49 +00:00
|
|
|
'on_epoch_end',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_validation_end',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_validation_model_train',
|
|
|
|
'on_train_start',
|
|
|
|
'on_epoch_start',
|
|
|
|
'on_train_epoch_start',
|
|
|
|
'on_train_batch_start',
|
|
|
|
'on_before_zero_grad',
|
2021-03-01 13:36:46 +00:00
|
|
|
'on_after_backward',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_train_batch_end',
|
|
|
|
'on_train_batch_start',
|
|
|
|
'on_before_zero_grad',
|
2021-03-01 13:36:46 +00:00
|
|
|
'on_after_backward',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_train_batch_end',
|
2021-02-08 08:35:07 +00:00
|
|
|
'on_train_epoch_end',
|
2021-02-08 18:54:43 +00:00
|
|
|
'on_epoch_end',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_validation_model_eval',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_validation_start',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_validation_epoch_start',
|
|
|
|
'on_validation_batch_start',
|
|
|
|
'on_validation_batch_end',
|
|
|
|
'on_validation_epoch_end',
|
2021-02-17 17:21:49 +00:00
|
|
|
'on_epoch_end',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_save_checkpoint',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_validation_end',
|
2020-11-11 17:05:24 +00:00
|
|
|
'on_validation_model_train',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_train_end',
|
|
|
|
'on_fit_end',
|
2021-01-13 06:09:47 +00:00
|
|
|
'teardown',
|
2020-10-20 12:33:46 +00:00
|
|
|
]
|
|
|
|
|
2020-11-05 22:27:04 +00:00
|
|
|
assert model.called == expected
|
|
|
|
|
2020-10-20 12:33:46 +00:00
|
|
|
model2 = HookedModel()
|
|
|
|
trainer.test(model2)
|
|
|
|
|
2020-11-05 22:27:04 +00:00
|
|
|
expected = [
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_fit_start',
|
|
|
|
'on_test_model_eval',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_test_start',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_test_epoch_start',
|
|
|
|
'on_test_batch_start',
|
|
|
|
'on_test_batch_end',
|
|
|
|
'on_test_epoch_end',
|
2021-02-17 17:21:49 +00:00
|
|
|
'on_epoch_end',
|
2021-01-13 06:09:47 +00:00
|
|
|
'on_test_end',
|
2020-10-20 12:33:46 +00:00
|
|
|
'on_test_model_train',
|
|
|
|
'on_fit_end',
|
2021-01-13 06:09:47 +00:00
|
|
|
'teardown', # for 'fit'
|
|
|
|
'teardown', # for 'test'
|
2020-10-20 12:33:46 +00:00
|
|
|
]
|
2020-11-05 22:27:04 +00:00
|
|
|
|
|
|
|
assert model2.called == expected
|