lightning/pytorch_lightning/callbacks/gpu_stats_monitor.py

168 lines
7.1 KiB
Python
Raw Normal View History

"""
GPU Stats Monitor
====================
Monitor and logs GPU stats during training.
"""
import os
import shutil
import subprocess
import time
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.utilities import rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.parsing import AttributeDict
class GPUStatsMonitor(Callback):
r"""
Automatically monitor and logs GPU stats during training stage. ``GPUStatsMonitor``
is a callback and in order to use it you need to assign a logger in the ``Trainer``.
Args:
memory_utilization: Set to ``True`` to log used, free and percentage of memory
utilization at the start and end of each step. Default: ``True``.
gpu_utilization: Set to ``True`` to log percentage of GPU utilization
at the start and end of each step. Default: ``True``.
intra_step_time: Set to ``True`` to log the time of each step. Default: ``False``.
inter_step_time: Set to ``True`` to log the time between the end of one step
and the start of the next step. Default: ``False``.
fan_speed: Set to ``True`` to log percentage of fan speed. Default: ``False``.
temperature: Set to ``True`` to log the memory and gpu temperature in degree Celsius.
Default: ``False``.
Example::
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.callbacks import GPUStatsMonitor
>>> gpu_stats = GPUStatsMonitor() # doctest: +SKIP
>>> trainer = Trainer(callbacks=[gpu_stats]) # doctest: +SKIP
GPU stats are mainly based on `nvidia-smi --query-gpu` command. The description of the queries is as follows:
- **fan.speed** The fan speed value is the percent of maximum speed that the device's fan is currently
intended to run at. It ranges from 0 to 100 %. Note: The reported speed is the intended fan speed.
If the fan is physically blocked and unable to spin, this output will not match the actual fan speed.
Many parts do not report fan speeds because they rely on cooling via fans in the surrounding enclosure.
- **memory.used** Total memory allocated by active contexts.
- **memory.free** Total free memory.
- **utilization.gpu** Percent of time over the past sample period during which one or more kernels was
executing on the GPU. The sample period may be between 1 second and 1/6 second depending on the product.
- **utilization.memory** Percent of time over the past sample period during which global (device) memory was
being read or written. The sample period may be between 1 second and 1/6 second depending on the product.
- **temperature.gpu** Core GPU temperature, in degrees C.
- **temperature.memory** HBM memory temperature, in degrees C.
"""
def __init__(
self,
memory_utilization: bool = True,
gpu_utilization: bool = True,
intra_step_time: bool = False,
inter_step_time: bool = False,
fan_speed: bool = False,
temperature: bool = False
):
super().__init__()
if shutil.which("nvidia-smi") is None:
raise MisconfigurationException(
'Cannot use GPUStatsMonitor callback because NVIDIA driver is not installed.'
)
self._log_stats = AttributeDict({
'memory_utilization': memory_utilization,
'gpu_utilization': gpu_utilization,
'intra_step_time': intra_step_time,
'inter_step_time': inter_step_time,
'fan_speed': fan_speed,
'temperature': temperature
})
def on_train_start(self, trainer, pl_module):
if not trainer.logger:
raise MisconfigurationException(
'Cannot use GPUStatsMonitor callback with Trainer that has no logger.'
)
if not trainer.on_gpu:
rank_zero_warn(
'You are using GPUStatsMonitor but are not running on GPU.'
' Logged utilization will be independent from your model.', RuntimeWarning
)
def on_train_epoch_start(self, trainer, pl_module):
self.snap_intra_step_time = None
self.snap_inter_step_time = None
@rank_zero_only
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
if self._log_stats.gpu_utilization:
self._log_usage(trainer)
if self._log_stats.memory_utilization:
self._log_memory(trainer)
if self._log_stats.inter_step_time and self.snap_inter_step_time:
# First log at beginning of second step
trainer.logger.log_metrics(
{'batch_time/inter_step (ms)': (time.time() - self.snap_inter_step_time) * 1000},
step=trainer.global_step
)
if self._log_stats.intra_step_time:
self.snap_intra_step_time = time.time()
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
if self._log_stats.gpu_utilization:
self._log_usage(trainer)
if self._log_stats.memory_utilization:
self._log_memory(trainer)
if self._log_stats.fan_speed:
trainer.logger.log_metrics(self._get_gpu_stat("fan.speed", "%"), step=trainer.global_step)
if self._log_stats.temperature:
trainer.logger.log_metrics(self._get_gpu_stat("temperature.gpu", "degrees C"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("temperature.memory", "degrees C"), step=trainer.global_step)
if self._log_stats.inter_step_time:
self.snap_inter_step_time = time.time()
if self._log_stats.intra_step_time and self.snap_intra_step_time:
trainer.logger.log_metrics(
{'batch_time/intra_step (ms)': (time.time() - self.snap_intra_step_time) * 1000},
step=trainer.global_step
)
@staticmethod
def _get_gpu_stat(pitem: str, unit: str):
result = subprocess.run(
[shutil.which("nvidia-smi"), f"--query-gpu={pitem}", "--format=csv,nounits,noheader"],
encoding="utf-8",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE, # for backward compatibility with python version 3.6
check=True
)
try:
gpu_usage = [float(x) for x in result.stdout.strip().split(os.linesep)]
except ValueError:
gpu_usage = [0]
return {f"gpu_{pitem}/gpu_id_{index} ({unit})": usage for index, usage in enumerate(gpu_usage)}
def _log_usage(self, trainer):
trainer.logger.log_metrics(self._get_gpu_stat("utilization.gpu", "%"), step=trainer.global_step)
def _log_memory(self, trainer):
trainer.logger.log_metrics(self._get_gpu_stat("memory.used", "MB"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("memory.free", "MB"), step=trainer.global_step)
trainer.logger.log_metrics(self._get_gpu_stat("utilization.memory", "%"), step=trainer.global_step)