lightning/docs/source/fast_training.rst

86 lines
2.6 KiB
ReStructuredText
Raw Normal View History

Fast Training
=============
There are multiple options to speed up different parts of the training by choosing to train
on a subset of data. This could be done for speed or debugging purposes.
Check validation every n epochs
-------------------------------
If you have a small dataset you might want to check validation every n epochs
.. code-block:: python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Force training for min or max epochs
------------------------------------
It can be useful to force training for a minimum number of epochs or limit to a max number.
CI: Force docs warnings to be raised as errors (+ fix all) (#1191) * add argument to force warn * fix automodule error * fix permalink error * fix indentation warning * fix warning * fix import warnings * fix duplicate label warning * fix bullet point indentation warning * fix duplicate label warning * fix "import not top level" warning * line too long * fix indentation * fix bullet points indentation warning * fix hooks warnings * fix reference problem with excluded test_tube * fix indentation in print * change imports for trains logger * remove pandas type annotation * Update pytorch_lightning/core/lightning.py * include bullet points inside note * remove old quick start guide (unused) * fix unused warning * fix formatting * fix duplicate label issue * fix duplicate label warning (replaced by class ref) * fix tick * fix indentation warnings * docstring ticks * remove obsolete docstring typing * Revert "remove old quick start guide (unused)" This reverts commit d51bb40695442c8fa11bc9df74f6db56264f7509. * added old quick start guide to navigation * remove unused tutorials file * ignore some modules that got deprecated and are not used anymore * fix duplicate label warning * move examples doc and exclude pl_examples from autodoc * fix formatting for configure_optimizer * fix no blank line warnings * fix "see also" labels and add paramref extension * fix more reference problems * fix multi-gpu reference * fix weird warning * fix indentation and unrecognized characters in code block * fix warning "... not included in toctree" * fix PIL import error * fix duplicate target "here" warning * fix broken link * revert accidentally moved pl_examples * changelog * stdout * note some things to know Co-Authored-By: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: J. Borovec <jirka.borovec@seznam.cz> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
2020-03-20 19:49:01 +00:00
.. seealso::
:class:`~pytorch_lightning.trainer.trainer.Trainer`
.. code-block:: python
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
Set validation check frequency within 1 training epoch
------------------------------------------------------
For large datasets it's often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch. Pass in an int k to check every k training batches.
Must use an int if using an IterableDataset.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Use training data subset
------------------------
If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag.
.. code-block:: python
# DEFAULT
trainer = Trainer(train_percent_check=1.0)
# check 10% only
trainer = Trainer(train_percent_check=0.1)
.. note:: ``train_percent_check`` will be overwritten by ``overfit_pct`` if ``overfit_pct`` > 0.
Use test data subset
--------------------
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag.
.. code-block:: python
# DEFAULT
trainer = Trainer(test_percent_check=1.0)
# check 10% only
trainer = Trainer(test_percent_check=0.1)
.. note:: ``test_percent_check`` will be overwritten by ``overfit_pct`` if ``overfit_pct`` > 0.
Use validation data subset
--------------------------
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_percent_check=1.0)
# check 10% only
trainer = Trainer(val_percent_check=0.1)
.. note:: ``val_percent_check`` will be overwritten by ``overfit_pct`` if ``overfit_pct`` > 0 and ignored if
``fast_dev_run=True``.