lightning/pytorch_lightning/trainer/training_loop.py

741 lines
26 KiB
Python
Raw Normal View History

"""
The lightning training loop handles everything except the actual computations of your model.
To decide what will happen in your training loop, define the `training_step` function.
Below are all the things lightning automates for you in the training loop.
Accumulated gradients
---------------------
Accumulated gradients runs K small batches of size N before doing a backwards pass.
The effect is a large effective batch size of size KxN.
.. code-block:: python
# DEFAULT (ie: no accumulated grads)
trainer = Trainer(accumulate_grad_batches=1)
Force training for min or max epochs
------------------------------------
It can be useful to force training for a minimum number of epochs or limit to a max number
.. code-block:: python
# DEFAULT
trainer = Trainer(min_epochs=1, max_epochs=1000)
Early stopping
--------------
The trainer already sets up default early stopping for you.
To modify this behavior, pass in your own EarlyStopping callback.
.. code-block:: python
from pytorch_lightning.callbacks import EarlyStopping
# DEFAULTS used by Trainer
early_stop_callback = EarlyStopping(
monitor='val_loss',
min_delta=0.00,
patience=3,
verbose=False,
mode='min'
)
# without passing anything in, uses the default callback above
trainer = Trainer()
# pass in your own to override the default callback
trainer = Trainer(early_stop_callback=early_stop_callback)
# pass in min_epochs to enable the callback after min_epochs have run
trainer = Trainer(early_stop_callback=early_stop_callback, min_epochs=5)
# pass in None to disable it
trainer = Trainer(early_stop_callback=None)
Force disable early stop
------------------------
To disable early stopping pass None to the early_stop_callback
.. code-block:: python
# DEFAULT
trainer = Trainer(early_stop_callback=None)
Gradient Clipping
-----------------
Gradient clipping may be enabled to avoid exploding gradients.
Specifically, this will `clip the gradient norm computed over all model parameters
`together <https://pytorch.org/docs/stable/nn.html#torch.nn.utils.clip_grad_norm_>`_.
.. code-block:: python
# DEFAULT (ie: don't clip)
trainer = Trainer(gradient_clip_val=0)
# clip gradients with norm above 0.5
trainer = Trainer(gradient_clip_val=0.5)
Inspect gradient norms
----------------------
Looking at grad norms can help you figure out where training might be going wrong.
.. code-block:: python
# DEFAULT (-1 doesn't track norms)
trainer = Trainer(track_grad_norm=-1)
# track the LP norm (P=2 here)
trainer = Trainer(track_grad_norm=2)
Set how much of the training set to check
-----------------------------------------
If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag.
train_percent_check will be overwritten by overfit_pct if `overfit_pct > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(train_percent_check=1.0)
# check 10% only
trainer = Trainer(train_percent_check=0.1)
Packed sequences as inputs
--------------------------
When using PackedSequence, do 2 things:
1. return either a padded tensor in dataset or a list of variable length tensors
resolving documentation warnings (#833) * add more underline * fix LightningMudule import error * remove unneeded blank line * escape asterisk to fix inline emphasis warning * add PULL_REQUEST_TEMPLATE.md * add __init__.py and import imagenet_example * fix duplicate label * add noindex option to fix duplicate object warnings * remove unexpected indent * refer explicit LightningModule * fix minor bug * refer EarlyStopping explicitly * restore exclude patterns * change the way how to refer class * remove unused import * update badges & drop Travis/Appveyor (#826) * drop Travis * drop Appveyor * update badges * fix missing PyPI images & CI badges (#853) * docs - anchor links (#848) * docs - add links * add desc. * add Greeting action (#843) * add Greeting action * Update greetings.yml Co-authored-by: William Falcon <waf2107@columbia.edu> * add pep8speaks (#842) * advanced profiler describe + cleaned up tests (#837) * add py36 compatibility * add test case to capture previous bug * clean up tests * clean up tests * Update lightning_module_template.py * Update lightning.py * respond lint issues * break long line * break more lines * checkout conflicting files from master * shorten url * checkout from upstream/master * remove trailing whitespaces * remove unused import LightningModule * fix sphinx bot warnings * Apply suggestions from code review just to trigger CI * Update .github/workflows/greetings.yml Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: William Falcon <waf2107@columbia.edu> Co-authored-by: Jeremy Jordan <13970565+jeremyjordan@users.noreply.github.com>
2020-02-27 21:07:51 +00:00
in the dataloader collate_fn (example above shows the list implementation).
2. Pack the sequence in forward or training and validation steps depending on use case.
.. code-block:: python
# For use in dataloader
def collate_fn(batch):
x = [item[0] for item in batch]
y = [item[1] for item in batch]
return x, y
# In module
def training_step(self, batch, batch_idx):
x = rnn.pack_sequence(batch[0], enforce_sorted=False)
y = rnn.pack_sequence(batch[1], enforce_sorted=False)
Truncated Backpropagation Through Time
--------------------------------------
There are times when multiple backwards passes are needed for each batch.
For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs.
When this flag is enabled each batch is split into sequences of size truncated_bptt_steps
and passed to training_step(...) separately. A default splitting function is provided,
however, you can override it for more flexibility. See `tbptt_split_batch`.
.. code-block:: python
# DEFAULT (single backwards pass per batch)
trainer = Trainer(truncated_bptt_steps=None)
# (split batch into sequences of size 2)
trainer = Trainer(truncated_bptt_steps=2)
"""
from typing import Callable
import copy
import warnings
import logging as log
from abc import ABC, abstractmethod
from typing import Union, List
import numpy as np
from torch.utils.data import DataLoader
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning import LightningModule
from pytorch_lightning.utilities.debugging import MisconfigurationException
from pytorch_lightning.callbacks.base import Callback
try:
from apex import amp
except ImportError:
APEX_AVAILABLE = False
else:
APEX_AVAILABLE = True
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
try:
import torch_xla.distributed.parallel_loader as xla_pl
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
import torch_xla.core.xla_model as xm
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
class TrainerTrainLoopMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
max_epochs: int
min_epochs: int
use_ddp: bool
use_dp: bool
use_ddp2: bool
single_gpu: bool
use_tpu: bool
data_parallel_device_ids: ...
check_val_every_n_epoch: ...
num_training_batches: int
val_check_batch: ...
num_val_batches: int
disable_validation: bool
fast_dev_run: ...
main_progress_bar: ...
accumulation_scheduler: ...
lr_schedulers: ...
enable_early_stop: ...
early_stop_callback: ...
callback_metrics: ...
logger: Union[LightningLoggerBase, bool]
global_step: int
testing: bool
log_save_interval: float
proc_rank: int
row_log_interval: float
total_batches: int
truncated_bptt_steps: ...
optimizers: ...
accumulate_grad_batches: int
use_amp: bool
print_nan_grads: ...
track_grad_norm: ...
model: LightningModule
running_loss: ...
training_tqdm_dict: ...
reduce_lr_on_plateau_scheduler: ...
profiler: ...
batch_idx: int
precision: ...
train_dataloader: DataLoader
reload_dataloaders_every_epoch: bool
progress_bar_refresh_rate: ...
max_steps: int
max_steps: int
total_batch_idx: int
# Callback system
callbacks: List[Callback]
on_train_start: Callable
on_train_end: Callable
on_batch_start: Callable
on_batch_end: Callable
on_epoch_start: Callable
on_epoch_end: Callable
@property
def max_nb_epochs(self):
"""
.. warning:: `max_nb_epochs` is deprecated and will be removed in v0.8.0, use `max_epochs` instead.
"""
warnings.warn("`max_nb_epochs` is deprecated and will be removed in "
"v0.8.0, use `max_epochs` instead.", DeprecationWarning)
return self.max_epochs
@property
def min_nb_epochs(self):
"""
.. warning:: `min_nb_epochs` is deprecated and will be removed in v0.8.0, use `min_epochs` instead.
"""
warnings.warn("`min_nb_epochs` is deprecated and will be removed in "
"v0.8.0, use `min_epochs` instead.", DeprecationWarning)
return self.min_epochs
@abstractmethod
def get_model(self):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def is_function_implemented(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def is_infinite_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def run_evaluation(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_gpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
@abstractmethod
def transfer_batch_to_tpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
@abstractmethod
def clip_gradients(self):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def print_nan_gradients(self):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def is_overriden(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def add_tqdm_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def process_output(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
@abstractmethod
def reset_train_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
@abstractmethod
def reset_val_dataloader(self, model):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def has_arg(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def train(self):
warnings.warn('Displayed epoch numbers in the progress bar start from "1" until v0.6.x,'
' but will start from "0" in v0.8.0.', DeprecationWarning)
# get model
model = self.get_model()
# load data
self.reset_train_dataloader(model)
self.reset_val_dataloader(model)
# Train begin callbacks
model.on_train_start()
self.on_train_start()
try:
# run all epochs
for epoch in range(self.current_epoch, self.max_epochs):
# set seed for distributed sampler (enables shuffling for each epoch)
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
if self.use_ddp \
and hasattr(self.train_dataloader.sampler, 'set_epoch'):
self.train_dataloader.sampler.set_epoch(epoch)
# update training progress in trainer and model
model.current_epoch = epoch
self.current_epoch = epoch
total_val_batches = 0
is_val_epoch = False
if not self.disable_validation:
# val can be checked multiple times in epoch
is_val_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
val_checks_per_epoch = self.num_training_batches // self.val_check_batch
val_checks_per_epoch = val_checks_per_epoch if is_val_epoch else 0
total_val_batches = self.num_val_batches * val_checks_per_epoch
# total batches includes multiple val checks
self.total_batches = self.num_training_batches + total_val_batches
self.batch_loss_value = 0 # accumulated grads
if self.fast_dev_run:
# limit the number of batches to 2 (1 train and 1 val) in fast_dev_run
num_iterations = 2
elif self.is_infinite_dataloader(self.train_dataloader):
# for infinite train loader, the progress bar never ends
num_iterations = None
else:
num_iterations = self.total_batches
# reset progress bar
# .reset() doesn't work on disabled progress bar so we should check
if not self.main_progress_bar.disable:
self.main_progress_bar.reset(num_iterations)
desc = f'Epoch {epoch + 1}' if not self.is_infinite_dataloader(self.train_dataloader) else ''
self.main_progress_bar.set_description(desc)
# changing gradient according accumulation_scheduler
self.accumulation_scheduler.on_epoch_start(self, self.get_model())
# -----------------
# RUN TNG EPOCH
# -----------------
self.run_training_epoch()
# update LR schedulers
if self.lr_schedulers is not None:
for lr_scheduler in self.lr_schedulers:
lr_scheduler.step()
if self.reduce_lr_on_plateau_scheduler is not None:
val_loss = self.callback_metrics.get('val_loss')
if val_loss is None:
avail_metrics = ','.join(list(self.callback_metrics.keys()))
m = f'ReduceLROnPlateau conditioned on metric val_loss ' \
f'which is not available. Available metrics are: {avail_metrics}'
raise MisconfigurationException(m)
self.reduce_lr_on_plateau_scheduler.step(val_loss)
if self.max_steps and self.max_steps == self.global_step:
self.main_progress_bar.close()
model.on_train_end()
self.on_train_end()
return
# early stopping
met_min_epochs = epoch >= self.min_epochs - 1
met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
if self.enable_early_stop and not self.disable_validation and is_val_epoch:
if ((met_min_epochs and met_min_steps) or self.fast_dev_run):
should_stop = self.early_stop_callback.on_epoch_end(self, self.get_model())
# stop training
stop = should_stop and met_min_epochs
if stop:
self.run_training_teardown()
self.on_train_end()
return
self.run_training_teardown()
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
except KeyboardInterrupt:
log.info('Detected KeyboardInterrupt, attempting graceful shutdown...')
self.run_training_teardown()
# Train end callbacks
self.on_train_end()
def run_training_epoch(self):
# Epoch begin callbacks
self.on_epoch_start()
# before epoch hook
if self.is_function_implemented('on_epoch_start'):
model = self.get_model()
with self.profiler.profile('on_epoch_start'):
model.on_epoch_start()
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
# reset train dataloader
if self.reload_dataloaders_every_epoch:
self.reset_train_dataloader(self.get_model())
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
# track local dataloader so TPU can wrap each epoch
train_dataloader = self.train_dataloader
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
# on TPU we have to wrap it under the ParallelLoader
if self.use_tpu:
device = xm.xla_device()
train_dataloader = xla_pl.ParallelLoader(train_dataloader, [device])
train_dataloader = train_dataloader.per_device_loader(device)
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
# run epoch
for batch_idx, batch in self.profiler.profile_iterable(
enumerate(train_dataloader), "get_train_batch"
):
# stop epoch if we limited the number of training batches
if batch_idx >= self.num_training_batches:
break
self.batch_idx = batch_idx
model = self.get_model()
model.global_step = self.global_step
# ---------------
# RUN TRAIN STEP
# ---------------
output = self.run_training_batch(batch, batch_idx)
batch_result, grad_norm_dic, batch_step_metrics = output
# when returning -1 from train_step, we end epoch early
early_stop_epoch = batch_result == -1
# ---------------
# RUN VAL STEP
# ---------------
is_val_check_batch = (batch_idx + 1) % self.val_check_batch == 0
can_check_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0
should_check_val = not self.disable_validation and can_check_epoch
should_check_val = should_check_val and (is_val_check_batch or early_stop_epoch)
# fast_dev_run always forces val checking after train batch
if self.fast_dev_run or should_check_val:
self.run_evaluation(test_mode=self.testing)
if self.enable_early_stop:
self.early_stop_callback.check_metrics(self.callback_metrics)
# when logs should be saved
should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or early_stop_epoch
if should_save_log or self.fast_dev_run:
if self.proc_rank == 0 and self.logger is not None:
self.logger.save()
# when metrics should be logged
should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch
if should_log_metrics or self.fast_dev_run:
# logs user requested information to logger
self.log_metrics(batch_step_metrics, grad_norm_dic)
# progress global step according to grads progress
if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
self.global_step += 1
self.total_batch_idx += 1
# max steps reached, end training
if self.max_steps is not None and self.max_steps == self.global_step:
break
# end epoch early
# stop when the flag is changed or we've gone past the amount
# requested in the batches
if early_stop_epoch or self.fast_dev_run:
break
# epoch end hook
if self.is_function_implemented('on_epoch_end'):
model = self.get_model()
with self.profiler.profile('on_epoch_end'):
model.on_epoch_end()
# Epoch begin callbacks
self.on_epoch_end()
def run_training_batch(self, batch, batch_idx):
# track grad norms
grad_norm_dic = {}
# track all metrics for callbacks
all_callback_metrics = []
# track metrics to log
all_log_metrics = []
if batch is None:
return 0, grad_norm_dic, {}
# Batch begin callbacks
self.on_batch_start()
# hook
if self.is_function_implemented('on_batch_start'):
model_ref = self.get_model()
with self.profiler.profile('on_batch_start'):
response = model_ref.on_batch_start(batch)
if response == -1:
return -1, grad_norm_dic, {}
splits = [batch]
if self.truncated_bptt_steps is not None:
model_ref = self.get_model()
with self.profiler.profile('tbptt_split_batch'):
splits = model_ref.tbptt_split_batch(batch, self.truncated_bptt_steps)
self.hiddens = None
for split_idx, split_batch in enumerate(splits):
self.split_idx = split_idx
# call training_step once per optimizer
for opt_idx, optimizer in enumerate(self.optimizers):
# make sure only the gradients of the current optimizer's paramaters are calculated
# in the training step to prevent dangling gradients in multiple-optimizer setup.
if len(self.optimizers) > 1:
for param in self.get_model().parameters():
param.requires_grad = False
for group in optimizer.param_groups:
for param in group['params']:
param.requires_grad = True
# wrap the forward step in a closure so second order methods work
def optimizer_closure():
# forward pass
with self.profiler.profile('model_forward'):
output = self.training_forward(
split_batch, batch_idx, opt_idx, self.hiddens)
closure_loss = output[0]
progress_bar_metrics = output[1]
log_metrics = output[2]
callback_metrics = output[3]
self.hiddens = output[4]
# accumulate loss
# (if accumulate_grad_batches = 1 no effect)
closure_loss = closure_loss / self.accumulate_grad_batches
# backward pass
model_ref = self.get_model()
with self.profiler.profile('model_backward'):
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
model_ref.backward(self, closure_loss, optimizer, opt_idx)
# track metrics for callbacks
all_callback_metrics.append(callback_metrics)
# track progress bar metrics
self.add_tqdm_metrics(progress_bar_metrics)
all_log_metrics.append(log_metrics)
# insert after step hook
if self.is_function_implemented('on_after_backward'):
model_ref = self.get_model()
with self.profiler.profile('on_after_backward'):
model_ref.on_after_backward()
return closure_loss
# calculate loss
loss = optimizer_closure()
# nan grads
if self.print_nan_grads:
self.print_nan_gradients()
# track total loss for logging (avoid mem leaks)
self.batch_loss_value += loss.item()
# gradient update with accumulated gradients
if (self.batch_idx + 1) % self.accumulate_grad_batches == 0:
# track gradient norms when requested
if batch_idx % self.row_log_interval == 0:
if self.track_grad_norm > 0:
model = self.get_model()
grad_norm_dic = model.grad_norm(
self.track_grad_norm)
# clip gradients
self.clip_gradients()
# calls .step(), .zero_grad()
# override function to modify this behavior
model = self.get_model()
with self.profiler.profile('optimizer_step'):
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
model.optimizer_step(self.current_epoch, batch_idx,
optimizer, opt_idx, optimizer_closure)
# calculate running loss for display
self.running_loss.append(self.batch_loss_value)
self.batch_loss_value = 0
self.avg_loss = np.mean(self.running_loss[-100:])
# activate batch end hook
if self.is_function_implemented('on_batch_end'):
model = self.get_model()
with self.profiler.profile('on_batch_end'):
model.on_batch_end()
# Batch end callbacks
self.on_batch_end()
# update progress bar
Clean up dataloader logic (#926) * added get dataloaders directly using a getter * deleted decorator * added prepare_data hook * refactored dataloader init * refactored dataloader init * added dataloader reset flag and main loop * added dataloader reset flag and main loop * added dataloader reset flag and main loop * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * made changes * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed bad loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixed error in .fit with loaders * fixes #909 * fixes #909 * bug fix * Fixes #902
2020-02-25 03:23:25 +00:00
if batch_idx % self.progress_bar_refresh_rate == 0:
self.main_progress_bar.update(self.progress_bar_refresh_rate)
self.main_progress_bar.set_postfix(**self.training_tqdm_dict)
# collapse all metrics into one dict
all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()}
# track all metrics for callbacks
self.callback_metrics.update({k: v for d in all_callback_metrics for k, v in d.items()})
return 0, grad_norm_dic, all_log_metrics
def run_training_teardown(self):
model = self.get_model()
self.main_progress_bar.close()
with self.profiler.profile('on_train_end'):
model.on_train_end()
if self.logger is not None:
self.logger.finalize("success")
# summarize profile results
self.profiler.describe()
def training_forward(self, batch, batch_idx, opt_idx, hiddens):
"""
Handle forward for each training case (distributed, single gpu, etc...)
:param batch:
:param batch_idx:
:return:
"""
# ---------------
# FORWARD
# ---------------
# enable not needing to add opt_idx to training_step
args = [batch, batch_idx]
if len(self.optimizers) > 1:
if self.has_arg('training_step', 'optimizer_idx'):
args.append(opt_idx)
else:
raise ValueError(
f'Your LightningModule defines {len(self.optimizers)} optimizers but '
f'training_step is missing the "optimizer_idx" argument.'
)
# pass hiddens if using tbptt
if self.truncated_bptt_steps is not None:
args.append(hiddens)
# distributed forward
if self.use_ddp or self.use_ddp2 or self.use_dp:
output = self.model(*args)
# single GPU forward
elif self.single_gpu:
gpu_id = 0
if isinstance(self.data_parallel_device_ids, list):
gpu_id = self.data_parallel_device_ids[0]
batch = self.transfer_batch_to_gpu(copy.copy(batch), gpu_id)
args[0] = batch
output = self.model.training_step(*args)
Enable TPU support (#868) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * fix test pkg create (#873) * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * Update pytorch_lightning/trainer/trainer.py Co-Authored-By: Luis Capelo <luiscape@gmail.com> * Fix segmentation example (#876) * removed torchvision model and added custom model * minor fix * Fixed relative imports issue * Fix/typo (#880) * Update greetings.yml * Update greetings.yml * Changelog (#869) * Create CHANGELOG.md * Update CHANGELOG.md * Update CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Update PULL_REQUEST_TEMPLATE.md * Add PR links to Version 0.6.0 in CHANGELOG.md * Add PR links for Unreleased in CHANGELOG.md * Update PULL_REQUEST_TEMPLATE.md * Fixing Function Signatures (#871) * added tpu docs * added tpu flags * add tpu docs + init training call * amp * amp * amp * amp * optimizer step * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added auto data transfer to TPU * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print * added test return and print Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: Luis Capelo <luiscape@gmail.com> Co-authored-by: Akshay Kulkarni <akshayk.vnit@gmail.com> Co-authored-by: Ethan Harris <ewah1g13@soton.ac.uk> Co-authored-by: Shikhar Chauhan <xssChauhan@users.noreply.github.com>
2020-02-17 21:01:20 +00:00
# TPU support
elif self.use_tpu:
batch = self.transfer_batch_to_tpu(copy.copy(batch))
args[0] = batch
output = self.model.training_step(*args)
# CPU forward
else:
output = self.model.training_step(*args)
# allow any mode to define training_end
if self.is_overriden('training_end'):
model_ref = self.get_model()
with self.profiler.profile('training_end'):
output = model_ref.training_end(output)
# format and reduce outputs accordingly
output = self.process_output(output, train=True)
return output