2020-10-26 10:47:09 +00:00
|
|
|
# Docker images
|
|
|
|
|
|
|
|
## Builds images form attached Dockerfiles
|
2020-04-25 18:17:09 +00:00
|
|
|
|
|
|
|
You can build it on your own, note it takes lots of time, be prepared.
|
2020-06-27 12:49:19 +00:00
|
|
|
|
2020-04-25 18:17:09 +00:00
|
|
|
```bash
|
|
|
|
git clone <git-repository>
|
2020-07-06 18:21:36 +00:00
|
|
|
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .
|
2020-04-25 18:17:09 +00:00
|
|
|
```
|
2020-06-27 12:49:19 +00:00
|
|
|
|
|
|
|
or with specific arguments
|
|
|
|
|
|
|
|
```bash
|
|
|
|
git clone <git-repository>
|
|
|
|
docker image build \
|
2020-11-09 14:48:24 +00:00
|
|
|
-t pytorch-lightning:py3.8-pt1.6 \
|
|
|
|
-f dockers/base-cuda/Dockerfile \
|
2020-07-04 15:31:12 +00:00
|
|
|
--build-arg PYTHON_VERSION=3.8 \
|
2020-11-09 14:48:24 +00:00
|
|
|
--build-arg PYTORCH_VERSION=1.6 \
|
2020-06-27 12:49:19 +00:00
|
|
|
.
|
|
|
|
```
|
2021-02-09 08:22:35 +00:00
|
|
|
or nightly version from Coda
|
|
|
|
```bash
|
|
|
|
git clone <git-repository>
|
|
|
|
docker image build \
|
|
|
|
-t pytorch-lightning:py3.7-pt1.8 \
|
|
|
|
-f dockers/base-conda/Dockerfile \
|
|
|
|
--build-arg PYTHON_VERSION=3.7 \
|
|
|
|
--build-arg PYTORCH_VERSION=1.8 \
|
|
|
|
.
|
|
|
|
```
|
2020-06-27 12:49:19 +00:00
|
|
|
|
|
|
|
To run your docker use
|
|
|
|
|
|
|
|
```bash
|
|
|
|
docker image list
|
|
|
|
docker run --rm -it pytorch-lightning:latest bash
|
|
|
|
```
|
|
|
|
|
|
|
|
and if you do not need it anymore, just clean it:
|
|
|
|
|
2020-04-25 18:17:09 +00:00
|
|
|
```bash
|
|
|
|
docker image list
|
2020-06-27 12:49:19 +00:00
|
|
|
docker image rm pytorch-lightning:latest
|
2020-10-26 10:47:09 +00:00
|
|
|
```
|
|
|
|
|
2021-04-27 19:29:49 +00:00
|
|
|
## Run docker image with GPUs
|
2020-10-26 10:47:09 +00:00
|
|
|
|
|
|
|
To run docker image with access to you GPUs you need to install
|
|
|
|
```bash
|
|
|
|
# Add the package repositories
|
|
|
|
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
|
|
|
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
|
|
|
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
|
|
|
|
|
|
|
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
|
|
|
|
sudo systemctl restart docker
|
|
|
|
```
|
|
|
|
|
|
|
|
and later run the docker image with `--gpus all` so for example
|
|
|
|
|
|
|
|
```
|
|
|
|
docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6
|
|
|
|
```
|
2021-04-27 19:29:49 +00:00
|
|
|
|
|
|
|
## Run Jupyter server
|
|
|
|
|
|
|
|
Inspiration comes from https://u.group/thinking/how-to-put-jupyter-notebooks-in-a-dockerfile
|
|
|
|
|
|
|
|
1. Build the docker image:
|
|
|
|
```bash
|
|
|
|
docker image build \
|
|
|
|
-t pytorch-lightning:v1.2.9 \
|
|
|
|
-f dockers/nvidia/Dockerfile \
|
|
|
|
--build-arg LIGHTNING_VERSION=1.2.9 \
|
|
|
|
.
|
|
|
|
```
|
|
|
|
2. start the server and map ports:
|
|
|
|
```bash
|
|
|
|
docker run --rm -it --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -p 8888:8888 pytorch-lightning:v1.2.9
|
|
|
|
```
|
|
|
|
3. Connect in local browser:
|
|
|
|
- copy the generated path e.g. `http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6`
|
|
|
|
- replace the `hostname` by `localhost`
|