lightning/pytorch_lightning/trainer/connectors/precision_connector.py

82 lines
3.3 KiB
Python
Raw Normal View History

2020-08-20 02:03:22 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pytorch_lightning import _logger as log
from pytorch_lightning.plugins.apex import ApexPlugin
from pytorch_lightning.plugins.native_amp import NativeAMP
from pytorch_lightning.utilities import APEX_AVAILABLE, NATIVE_AMP_AVALAIBLE, AMPType, rank_zero_warn
class PrecisionConnector:
def __init__(self, trainer):
self.trainer = trainer
self.backend = None
def on_trainer_init(self, precision, amp_level, amp_backend):
# AMP init
# These are the only lines needed after v0.8.0
# we wrap the user's forward with autocast and give it back at the end of fit
self.trainer.autocast_original_forward = None
self.trainer.precision = precision
self.trainer.scaler = None
self.trainer.amp_level = amp_level
self.init_amp(amp_backend)
def init_amp(self, amp_type: str):
assert self.trainer.precision in (16, 32), 'only 32 or 16 bit precision supported'
self.trainer.amp_backend = None
self._setup_amp_backend(amp_type)
def _setup_amp_backend(self, amp_type: str):
if self.trainer.precision != 16:
# no AMP requested, so we can leave now
return
amp_type = amp_type.lower()
assert amp_type in ('native', 'apex'), f'Unsupported amp type {amp_type}'
if amp_type == 'native':
if not NATIVE_AMP_AVALAIBLE:
rank_zero_warn('You have asked for native AMP but your PyTorch version does not support it.'
' Consider upgrading with `pip install torch>=1.6`.'
' We will attempt to use NVIDIA Apex for this session.')
amp_type = 'apex'
else:
log.info('Using native 16bit precision.')
self.trainer.amp_backend = AMPType.NATIVE
self.backend = NativeAMP(self.trainer)
if amp_type == 'apex':
if not APEX_AVAILABLE:
rank_zero_warn('You have asked for Apex AMP but you have not installed it yet.'
' Install apex first using this guide: https://github.com/NVIDIA/apex#linux')
else:
log.info('Using APEX 16bit precision.')
self.trainer.amp_backend = AMPType.APEX
self.backend = ApexPlugin(self.trainer)
if not self.trainer.amp_backend:
raise ModuleNotFoundError(
f'You have asked for AMP support {amp_type}, but there is no support on your side yet.'
f' Consider installing torch >= 1.6 or NVIDIA Apex.'
)
def connect(self, model):
if self.backend:
model, optimizers = self.backend.connect(model, self.trainer.optimizers)
self.trainer.optimizers = optimizers
return model