122 lines
5.0 KiB
ReStructuredText
122 lines
5.0 KiB
ReStructuredText
|
:orphan:
|
||
|
|
||
|
.. _profiler_basic:
|
||
|
|
||
|
#####################################
|
||
|
Find bottlenecks in your code (basic)
|
||
|
#####################################
|
||
|
**Audience**: Users who want to learn the basics of removing bottlenecks from their code
|
||
|
|
||
|
----
|
||
|
|
||
|
************************
|
||
|
Why do I need profiling?
|
||
|
************************
|
||
|
Profiling helps you find bottlenecks in your code by capturing analytics such as how long a function takes or how much memory is used.
|
||
|
|
||
|
------------
|
||
|
|
||
|
******************************
|
||
|
Find training loop bottlenecks
|
||
|
******************************
|
||
|
The most basic profile measures all the key methods across **Callbacks**, **DataModules** and the **LightningModule** in the training loop.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
trainer = Trainer(profiler="simple")
|
||
|
|
||
|
Once the **.fit()** function has completed, you'll see an output like this:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
FIT Profiler Report
|
||
|
|
||
|
-----------------------------------------------------------------------------------------------
|
||
|
| Action | Mean duration (s) | Total time (s) |
|
||
|
-----------------------------------------------------------------------------------------------
|
||
|
| [LightningModule]BoringModel.prepare_data | 10.0001 | 20.00 |
|
||
|
| run_training_epoch | 6.1558 | 6.1558 |
|
||
|
| run_training_batch | 0.0022506 | 0.015754 |
|
||
|
| [LightningModule]BoringModel.optimizer_step | 0.0017477 | 0.012234 |
|
||
|
| [LightningModule]BoringModel.val_dataloader | 0.00024388 | 0.00024388 |
|
||
|
| on_train_batch_start | 0.00014637 | 0.0010246 |
|
||
|
| [LightningModule]BoringModel.teardown | 2.15e-06 | 2.15e-06 |
|
||
|
| [LightningModule]BoringModel.on_train_start | 1.644e-06 | 1.644e-06 |
|
||
|
| [LightningModule]BoringModel.on_train_end | 1.516e-06 | 1.516e-06 |
|
||
|
| [LightningModule]BoringModel.on_fit_end | 1.426e-06 | 1.426e-06 |
|
||
|
| [LightningModule]BoringModel.setup | 1.403e-06 | 1.403e-06 |
|
||
|
| [LightningModule]BoringModel.on_fit_start | 1.226e-06 | 1.226e-06 |
|
||
|
-----------------------------------------------------------------------------------------------
|
||
|
|
||
|
In this report we can see that the slowest function is **prepare_data**. Now you can figure out why data preparation is slowing down your training.
|
||
|
|
||
|
The simple profiler measures all the standard methods used in the training loop automatically, including:
|
||
|
|
||
|
- on_train_epoch_start
|
||
|
- on_train_epoch_end
|
||
|
- on_train_batch_start
|
||
|
- model_backward
|
||
|
- on_after_backward
|
||
|
- optimizer_step
|
||
|
- on_train_batch_end
|
||
|
- training_step_end
|
||
|
- on_training_end
|
||
|
- etc...
|
||
|
|
||
|
----
|
||
|
|
||
|
**************************************
|
||
|
Profile the time within every function
|
||
|
**************************************
|
||
|
To profile the time within every function, use the :class:`~pytorch_lightning.profiler.advanced.AdvancedProfiler` built on top of Python's `cProfiler <https://docs.python.org/3/library/profile.html#module-cProfile>`_.
|
||
|
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
trainer = Trainer(profiler="advanced")
|
||
|
|
||
|
Once the **.fit()** function has completed, you'll see an output like this:
|
||
|
|
||
|
.. code-block::
|
||
|
|
||
|
Profiler Report
|
||
|
|
||
|
Profile stats for: get_train_batch
|
||
|
4869394 function calls (4863767 primitive calls) in 18.893 seconds
|
||
|
Ordered by: cumulative time
|
||
|
List reduced from 76 to 10 due to restriction <10>
|
||
|
ncalls tottime percall cumtime percall filename:lineno(function)
|
||
|
3752/1876 0.011 0.000 18.887 0.010 {built-in method builtins.next}
|
||
|
1876 0.008 0.000 18.877 0.010 dataloader.py:344(__next__)
|
||
|
1876 0.074 0.000 18.869 0.010 dataloader.py:383(_next_data)
|
||
|
1875 0.012 0.000 18.721 0.010 fetch.py:42(fetch)
|
||
|
1875 0.084 0.000 18.290 0.010 fetch.py:44(<listcomp>)
|
||
|
60000 1.759 0.000 18.206 0.000 mnist.py:80(__getitem__)
|
||
|
60000 0.267 0.000 13.022 0.000 transforms.py:68(__call__)
|
||
|
60000 0.182 0.000 7.020 0.000 transforms.py:93(__call__)
|
||
|
60000 1.651 0.000 6.839 0.000 functional.py:42(to_tensor)
|
||
|
60000 0.260 0.000 5.734 0.000 transforms.py:167(__call__)
|
||
|
|
||
|
If the profiler report becomes too long, you can stream the report to a file:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
from pytorch_lightning.profiler import AdvancedProfiler
|
||
|
|
||
|
profiler = AdvancedProfiler(dirpath=".", filename="perf_logs")
|
||
|
trainer = Trainer(profiler=profiler)
|
||
|
|
||
|
----
|
||
|
|
||
|
*************************
|
||
|
Measure accelerator usage
|
||
|
*************************
|
||
|
Another helpful technique to detect bottlenecks is to ensure that you're using the full capacity of your accelerator (GPU/TPU/IPU/HPU).
|
||
|
This can be measured with the :class:`~pytorch_lightning.callbacks.device_stats_monitor.DeviceStatsMonitor`:
|
||
|
|
||
|
.. testcode::
|
||
|
|
||
|
from pytorch_lightning.callbacks import DeviceStatsMonitor
|
||
|
|
||
|
trainer = Trainer(callbacks=[DeviceStatsMonitor()])
|