lightning/tests/trainer/test_dataloaders.py

564 lines
15 KiB
Python
Raw Normal View History

2020-04-20 08:04:37 +00:00
import platform
import pytest
import torch
import tests.base.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import (
TestModelBase,
LightningTestModel,
LightEmptyTestStep,
LightValidationMultipleDataloadersMixin,
LightTestMultipleDataloadersMixin,
LightTestFitSingleTestDataloadersMixin,
LightTestFitMultipleTestDataloadersMixin,
LightValStepFitMultipleDataloadersMixin,
LightValStepFitSingleDataloaderMixin,
LightTrainDataloader,
LightInfTrainDataloader,
LightInfValDataloader,
LightInfTestDataloader,
LightZeroLenDataloader
)
def test_dataloader_config_errors(tmpdir):
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# percent check < 0
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
train_percent_check=-0.1,
)
# fit model
trainer = Trainer(**trainer_options)
with pytest.raises(ValueError):
trainer.fit(model)
# percent check > 1
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
train_percent_check=1.1,
)
# fit model
trainer = Trainer(**trainer_options)
with pytest.raises(ValueError):
trainer.fit(model)
# int val_check_interval > num batches
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=10000
)
# fit model
trainer = Trainer(**trainer_options)
with pytest.raises(ValueError):
trainer.fit(model)
# float val_check_interval > 1
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=1.1
)
# fit model
trainer = Trainer(**trainer_options)
with pytest.raises(ValueError):
trainer.fit(model)
def test_multiple_val_dataloader(tmpdir):
"""Verify multiple val_dataloader."""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValidationMultipleDataloadersMixin,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=1.0,
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# verify training completed
assert result == 1
# verify there are 2 val loaders
assert len(trainer.val_dataloaders) == 2, \
'Multiple val_dataloaders not initiated properly'
# make sure predictions are good for each val set
for dataloader in trainer.val_dataloaders:
tutils.run_prediction(dataloader, trainer.model)
def test_multiple_test_dataloader(tmpdir):
"""Verify multiple test_dataloader."""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightTestMultipleDataloadersMixin,
LightEmptyTestStep,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model)
trainer.test()
# verify there are 2 val loaders
assert len(trainer.test_dataloaders) == 2, \
'Multiple test_dataloaders not initiated properly'
# make sure predictions are good for each test set
for dataloader in trainer.test_dataloaders:
tutils.run_prediction(dataloader, trainer.model)
# run the test method
trainer.test()
def test_train_dataloaders_passed_to_fit(tmpdir):
"""Verify that train dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(LightTrainDataloader, TestModelBase):
pass
hparams = tutils.get_default_hparams()
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# only train passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True))
result = trainer.fit(model, **fit_options)
assert result == 1
def test_train_val_dataloaders_passed_to_fit(tmpdir):
""" Verify that train & val dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, val passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=model._dataloader(train=False))
result = trainer.fit(model, **fit_options)
assert result == 1
assert len(trainer.val_dataloaders) == 1, \
f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
def test_all_dataloaders_passed_to_fit(tmpdir):
"""Verify train, val & test dataloader can be passed to fit """
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
LightTestFitSingleTestDataloadersMixin,
LightEmptyTestStep,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, val and test passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=model._dataloader(train=False))
test_options = dict(test_dataloaders=model._dataloader(train=False))
result = trainer.fit(model, **fit_options)
trainer.test(**test_options)
assert result == 1
assert len(trainer.val_dataloaders) == 1, \
f'val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 1, \
f'test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
def test_multiple_dataloaders_passed_to_fit(tmpdir):
"""Verify that multiple val & test dataloaders can be passed to fit."""
tutils.reset_seed()
class CurrentTestModel(
LightningTestModel,
LightValStepFitMultipleDataloadersMixin,
LightTestFitMultipleTestDataloadersMixin,
):
pass
hparams = tutils.get_default_hparams()
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# train, multiple val and multiple test passed to fit
model = CurrentTestModel(hparams)
trainer = Trainer(**trainer_options)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=[model._dataloader(train=False),
model._dataloader(train=False)])
test_options = dict(test_dataloaders=[model._dataloader(train=False),
model._dataloader(train=False)])
results = trainer.fit(model, **fit_options)
trainer.test(**test_options)
assert len(trainer.val_dataloaders) == 2, \
f'Multiple `val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 2, \
f'Multiple `test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
def test_mixing_of_dataloader_options(tmpdir):
"""Verify that dataloaders can be passed to fit"""
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
LightTestFitSingleTestDataloadersMixin,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
# fit model
trainer = Trainer(**trainer_options)
fit_options = dict(val_dataloaders=model._dataloader(train=False))
results = trainer.fit(model, **fit_options)
# fit model
trainer = Trainer(**trainer_options)
fit_options = dict(val_dataloaders=model._dataloader(train=False))
test_options = dict(test_dataloaders=model._dataloader(train=False))
_ = trainer.fit(model, **fit_options)
trainer.test(**test_options)
assert len(trainer.val_dataloaders) == 1, \
f'`val_dataloaders` not initiated properly, got {trainer.val_dataloaders}'
assert len(trainer.test_dataloaders) == 1, \
f'`test_dataloaders` not initiated properly, got {trainer.test_dataloaders}'
def test_inf_train_dataloader(tmpdir):
"""Test inf train data loader (e.g. IterableDataset)"""
tutils.reset_seed()
class CurrentTestModel(
LightInfTrainDataloader,
LightningTestModel
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# fit model
with pytest.raises(MisconfigurationException):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=0.5
)
trainer.fit(model)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_check_interval=50
)
result = trainer.fit(model)
# verify training completed
assert result == 1
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1
)
result = trainer.fit(model)
# verify training completed
assert result == 1
def test_inf_val_dataloader(tmpdir):
"""Test inf val data loader (e.g. IterableDataset)"""
tutils.reset_seed()
class CurrentTestModel(
LightInfValDataloader,
LightningTestModel
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# fit model
with pytest.raises(MisconfigurationException):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.5
)
trainer.fit(model)
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1
)
result = trainer.fit(model)
# verify training completed
assert result == 1
def test_inf_test_dataloader(tmpdir):
"""Test inf test data loader (e.g. IterableDataset)"""
tutils.reset_seed()
class CurrentTestModel(
LightInfTestDataloader,
LightningTestModel,
LightTestFitSingleTestDataloadersMixin
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# fit model
with pytest.raises(MisconfigurationException):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
test_percent_check=0.5
)
trainer.test(model)
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1
)
result = trainer.fit(model)
trainer.test(model)
# verify training completed
assert result == 1
def test_error_on_zero_len_dataloader(tmpdir):
""" Test that error is raised if a zero-length dataloader is defined """
tutils.reset_seed()
class CurrentTestModel(
LightZeroLenDataloader,
LightningTestModel
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# fit model
with pytest.raises(ValueError):
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
test_percent_check=0.5
)
trainer.fit(model)
2020-04-20 08:04:37 +00:00
@pytest.mark.skipif(platform.system() == 'Windows', reason='Does not apply to Windows platform.')
def test_warning_with_few_workers(tmpdir):
""" Test that error is raised if dataloader with only a few workers is used """
tutils.reset_seed()
class CurrentTestModel(
LightTrainDataloader,
LightValStepFitSingleDataloaderMixin,
LightTestFitSingleTestDataloadersMixin,
LightEmptyTestStep,
TestModelBase,
):
pass
hparams = tutils.get_default_hparams()
model = CurrentTestModel(hparams)
# logger file to get meta
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2
)
fit_options = dict(train_dataloader=model._dataloader(train=True),
val_dataloaders=model._dataloader(train=False))
test_options = dict(test_dataloaders=model._dataloader(train=False))
trainer = Trainer(**trainer_options)
# fit model
with pytest.warns(UserWarning, match='train'):
trainer.fit(model, **fit_options)
with pytest.warns(UserWarning, match='val'):
trainer.fit(model, **fit_options)
with pytest.warns(UserWarning, match='test'):
trainer.test(**test_options)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason='Test requires multiple GPUs')
def test_dataloader_reinit_for_subclass():
class CustomDataLoader(torch.utils.data.DataLoader):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=None,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None, dummy_kwarg=None):
super().__init__(dataset, batch_size, shuffle, sampler, batch_sampler,
num_workers, collate_fn, pin_memory, drop_last, timeout,
worker_init_fn)
self.dummy_kwarg = dummy_kwarg
trainer = Trainer(
gpus=[0, 1],
num_nodes=1,
distributed_backend='ddp',
)
class CustomDummyObj:
sampler = None
result = trainer.auto_add_sampler(CustomDummyObj(), train=True)
assert isinstance(result, CustomDummyObj), "Wrongly reinstantiated data loader"
result = trainer.auto_add_sampler(CustomDataLoader(list(range(1000))), train=True)
assert isinstance(result, torch.utils.data.DataLoader)
assert isinstance(result, CustomDataLoader)
assert hasattr(result, 'dummy_kwarg')