# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
from collections import Counter
from enum import Enum
from functools import wraps
from typing import Callable, Any, Optional
def enabled_only(fn: Callable):
"""Decorate a logger method to run it only on the process with rank 0.
Args:
fn: Function to decorate
"""
@wraps(fn)
def wrapped_fn(self, *args, **kwargs):
if self.enabled:
fn(self, *args, **kwargs)
return wrapped_fn
class InternalDebugger(object):
def __init__(self, trainer):
self.enabled = os.environ.get('PL_DEV_DEBUG', '0') == '1'
self.trainer = trainer
self.logged_metrics = []
self.pbar_added_metrics = []
self.saved_train_losses = []
self.saved_val_losses = []
self.saved_test_losses = []
self.early_stopping_history = []
self.checkpoint_callback_history = []
self.events = []
self.saved_lr_scheduler_updates = []
def track_event(
self,
evt_type: str,
evt_value: Any = None,
global_rank: Optional[int] = None,
local_rank: Optional[int] = None,
comment: str = ''
) -> None:
self.events.append({
"timestamp": time.time(),
"event": evt_type,
"value": evt_value,
"global_rank": global_rank,
"local_rank": local_rank,
"comment": comment,
})
def count_events(self, evt_type: str, strict=False) -> int:
count = 0
for evt in self.events:
if strict and evt["event"] == evt_type:
count += 1
elif not strict and evt_type in evt["event"]:
return count
@enabled_only
def track_logged_metrics_history(self, scalar_metrics):
scalar_metrics['global_step'] = self.trainer.global_step
self.logged_metrics.append(scalar_metrics)
def track_train_loss_history(self, batch_idx, loss):
loss_dict = {'batch_idx': batch_idx, 'epoch': self.trainer.current_epoch, 'loss': loss.detach()}
self.saved_train_losses.append(loss_dict)
def track_lr_schedulers_update(self, batch_idx, interval, scheduler_idx, old_lr, new_lr, monitor_key=None):
loss_dict = {
'batch_idx': batch_idx,
'interval': interval,
'scheduler_idx': scheduler_idx,
'epoch': self.trainer.current_epoch,
'monitor_key': monitor_key,
'old_lr': old_lr,
'new_lr': new_lr
}
self.saved_lr_scheduler_updates.append(loss_dict)
def track_eval_loss_history(self, test_mode, batch_idx, dataloader_idx, output):
'sanity_check': self.trainer.running_sanity_check,
'dataloader_idx': dataloader_idx,
'output': output
if test_mode:
self.saved_test_losses.append(loss_dict)
else:
self.saved_val_losses.append(loss_dict)
def track_pbar_metrics_history(self, metrics):
metrics['debug_epoch'] = self.trainer.current_epoch
self.pbar_added_metrics.append(metrics)
def track_early_stopping_history(self, current):
es = self.trainer.early_stop_callback
debug_dict = {
'global_step': self.trainer.global_step,
'rank': self.trainer.global_rank,
'current': current,
'best': es.best_score,
'patience': es.wait_count
self.early_stopping_history.append(debug_dict)
def track_checkpointing_history(self, filepath):
cb = self.trainer.checkpoint_callback
'monitor': cb.monitor,
'filepath': filepath
self.checkpoint_callback_history.append(debug_dict)
@property
def num_seen_sanity_check_batches(self):
count = len([x for x in self.saved_val_losses if x['sanity_check']])
def num_seen_val_check_batches(self):
counts = Counter()
for x in self.saved_val_losses:
if not x['sanity_check']:
counts.update({x['dataloader_idx']: 1})
return counts
def num_seen_test_check_batches(self):
for x in self.saved_test_losses: