2019-06-25 23:42:15 +00:00
|
|
|
from itertools import chain
|
|
|
|
from torch.nn import DataParallel
|
2019-06-25 23:45:31 +00:00
|
|
|
import pdb
|
2019-06-25 23:42:15 +00:00
|
|
|
|
|
|
|
|
|
|
|
class LightningDataParallel(DataParallel):
|
|
|
|
"""
|
|
|
|
Override the forward call in lightning so it goes to training and validation step respectively
|
|
|
|
"""
|
|
|
|
|
|
|
|
def forward(self, *inputs, **kwargs):
|
|
|
|
if not self.device_ids:
|
|
|
|
# -------------
|
|
|
|
# MAIN CHANGE
|
|
|
|
if self.module.training:
|
|
|
|
return self.module.training_step(*inputs, **kwargs)
|
|
|
|
else:
|
|
|
|
return self.module.validation_step(*inputs, **kwargs)
|
|
|
|
# -------------
|
|
|
|
|
|
|
|
for t in chain(self.module.parameters(), self.module.buffers()):
|
|
|
|
if t.device != self.src_device_obj:
|
|
|
|
raise RuntimeError("module must have its parameters and buffers "
|
|
|
|
"on device {} (device_ids[0]) but found one of "
|
|
|
|
"them on device: {}".format(self.src_device_obj, t.device))
|
|
|
|
|
|
|
|
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
|
|
|
|
if len(self.device_ids) == 1:
|
2019-06-25 23:46:49 +00:00
|
|
|
if self.module.training:
|
|
|
|
return self.module.training_step(*inputs[0], **kwargs[0])
|
|
|
|
else:
|
|
|
|
return self.module.validation_step(*inputs[0], **kwargs[0])
|
2019-06-25 23:42:15 +00:00
|
|
|
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
|
|
|
|
outputs = self.parallel_apply(replicas, inputs, kwargs)
|
|
|
|
return self.gather(outputs, self.output_device)
|