2024-05-19 00:35:58 +00:00
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
|
|
# All rights reserved.
|
|
|
|
#
|
|
|
|
# This source code is licensed under the BSD-style license found in the
|
|
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
#
|
|
|
|
# Llama 2 is licensed under the LLAMA 2 Community License,
|
|
|
|
# Copyright (c) Meta Platforms, Inc. All Rights Reserved.
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
2024-11-25 08:20:17 +00:00
|
|
|
from typing import Optional
|
2024-05-19 00:35:58 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import nn
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ModelArgs:
|
|
|
|
dim: int = 4096
|
|
|
|
n_layers: int = 32
|
|
|
|
n_heads: int = 32
|
|
|
|
n_kv_heads: Optional[int] = None
|
|
|
|
vocab_size: int = -1 # defined later by tokenizer
|
|
|
|
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
|
|
|
|
ffn_dim_multiplier: Optional[float] = None
|
|
|
|
norm_eps: float = 1e-5
|
|
|
|
rope_theta: float = 10000
|
|
|
|
|
|
|
|
max_batch_size: int = 32
|
|
|
|
max_seq_len: int = 2048
|
|
|
|
# If `True`, then each transformer block init uses its layer ID, and if
|
|
|
|
# `False`, each uses the total number of transformer blocks
|
|
|
|
depth_init: bool = True
|
|
|
|
|
|
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0) -> torch.Tensor:
|
|
|
|
"""Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
|
|
|
|
|
|
|
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim'
|
|
|
|
and the end index 'end'. The 'theta' parameter scales the frequencies.
|
|
|
|
The returned tensor contains complex values in complex64 data type.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dim (int): Dimension of the frequency tensor.
|
|
|
|
end (int): End index for precomputing frequencies.
|
|
|
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Precomputed frequency tensor with complex exponentials.
|
|
|
|
|
|
|
|
"""
|
|
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
|
|
t = torch.arange(end, device=freqs.device)
|
|
|
|
freqs = torch.outer(t, freqs).float()
|
|
|
|
return torch.polar(torch.ones_like(freqs), freqs) # complex64
|
|
|
|
|
|
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""Reshape frequency tensor for broadcasting it with another tensor.
|
|
|
|
|
|
|
|
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
|
|
|
|
for the purpose of broadcasting the frequency tensor during element-wise operations.
|
|
|
|
|
|
|
|
The input freqs_cis tensor is assumed to be of shape (max_seqlen, dim),
|
|
|
|
and the first seqlen elements will be sliced, but dim must match x.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
freqs_cis (torch.Tensor): Frequency tensor to be reshaped.
|
|
|
|
x (torch.Tensor): Target tensor for broadcasting compatibility.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Reshaped frequency tensor.
|
|
|
|
|
|
|
|
"""
|
|
|
|
ndim = x.ndim
|
|
|
|
assert 0 <= 1 < ndim
|
|
|
|
seqlen = x.shape[1]
|
|
|
|
freqs_cis = freqs_cis[0:seqlen]
|
|
|
|
assert freqs_cis.shape == (seqlen, x.shape[-1])
|
|
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|
|
|
return freqs_cis.view(*shape)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_emb(
|
|
|
|
xq: torch.Tensor,
|
|
|
|
xk: torch.Tensor,
|
|
|
|
freqs_cis: torch.Tensor,
|
2024-11-25 08:20:17 +00:00
|
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
2024-05-19 00:35:58 +00:00
|
|
|
"""Apply rotary embeddings to input tensors using the given frequency tensor.
|
|
|
|
|
|
|
|
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
|
|
|
|
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
|
|
|
|
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
|
|
|
|
returned as real tensors.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
xq (torch.Tensor): Query tensor to apply rotary embeddings.
|
|
|
|
xk (torch.Tensor): Key tensor to apply rotary embeddings.
|
|
|
|
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
|
|
|
|
|
|
|
"""
|
|
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
|
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
|
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
|
|
bs, slen, n_kv_heads, head_dim = x.shape
|
|
|
|
if n_rep == 1:
|
|
|
|
return x
|
|
|
|
return (
|
|
|
|
x[:, :, :, None, :]
|
|
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
|
|
"""Initialize the RMSNorm normalization layer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dim (int): The dimension of the input tensor.
|
|
|
|
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
eps (float): A small value added to the denominator for numerical stability.
|
|
|
|
weight (nn.Parameter): Learnable scaling parameter.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
|
|
super().__init__()
|
|
|
|
self.eps = eps
|
|
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
|
|
|
|
def _norm(self, x: torch.Tensor):
|
|
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
|
|
output = self._norm(x.float()).type_as(x)
|
|
|
|
return output * self.weight
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
torch.nn.init.ones_(self.weight) # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module):
|
|
|
|
"""Multi-head attention module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_args (ModelArgs): Model configuration arguments.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
n_kv_heads (int): Number of key and value heads.
|
|
|
|
n_heads (int): Number of query heads.
|
|
|
|
n_rep (int): Number of repetitions for local heads.
|
|
|
|
head_dim (int): Dimension size of each attention head.
|
|
|
|
wq (Linear): Linear transformation for queries.
|
|
|
|
wk (Linear): Linear transformation for keys.
|
|
|
|
wv (Linear): Linear transformation for values.
|
|
|
|
wo (Linear): Linear transformation for output.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model_args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.n_heads = model_args.n_heads
|
|
|
|
self.n_kv_heads = model_args.n_heads if model_args.n_kv_heads is None else model_args.n_kv_heads
|
|
|
|
self.n_rep = self.n_heads // self.n_kv_heads
|
|
|
|
self.head_dim = model_args.dim // model_args.n_heads
|
|
|
|
|
|
|
|
self.wq = nn.Linear(model_args.dim, model_args.n_heads * self.head_dim, bias=False)
|
|
|
|
self.wk = nn.Linear(model_args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
|
self.wv = nn.Linear(model_args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
|
|
self.wo = nn.Linear(model_args.n_heads * self.head_dim, model_args.dim, bias=False)
|
|
|
|
|
|
|
|
def init_weights(self, init_std: float):
|
|
|
|
for linear in (self.wq, self.wk, self.wv):
|
|
|
|
nn.init.trunc_normal_(linear.weight, mean=0.0, std=0.02)
|
|
|
|
nn.init.trunc_normal_(self.wo.weight, mean=0.0, std=init_std)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
x: torch.Tensor,
|
|
|
|
freqs_cis: torch.Tensor,
|
|
|
|
):
|
|
|
|
"""Forward pass of the attention module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
freqs_cis (torch.Tensor): Precomputed frequency tensor.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Output tensor after attention.
|
|
|
|
|
|
|
|
"""
|
|
|
|
bs, seqlen, _ = x.shape
|
|
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
|
|
|
|
xq = xq.view(bs, seqlen, self.n_heads, self.head_dim)
|
|
|
|
xk = xk.view(bs, seqlen, self.n_kv_heads, self.head_dim)
|
|
|
|
xv = xv.view(bs, seqlen, self.n_kv_heads, self.head_dim)
|
|
|
|
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
|
|
|
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
|
|
keys = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
|
|
|
values = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
|
|
|
|
|
|
|
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
|
|
xk = keys.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
|
|
xv = values.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
|
|
|
|
|
|
# we use casual mask for training
|
|
|
|
output = F.scaled_dot_product_attention(xq, xk, xv, is_causal=True)
|
|
|
|
output = output.transpose(1, 2).contiguous() # (bs, seqlen, n_local_heads, head_dim)
|
|
|
|
output = output.view(bs, seqlen, -1)
|
|
|
|
return self.wo(output)
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
|
"""FeedForward module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dim (int): Input dimension.
|
|
|
|
hidden_dim (int): Hidden dimension of the feedforward layer.
|
|
|
|
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
|
|
|
ffn_dim_multiplier (Optional[float]): Custom multiplier for hidden dimension. Defaults to None.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
w1 (Linear): Linear transformation for the first layer.
|
|
|
|
w2 (Linear): Linear transformation for the second layer.
|
|
|
|
w3 (Linear): Linear transformation for the third layer.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
dim: int,
|
|
|
|
hidden_dim: int,
|
|
|
|
multiple_of: int,
|
|
|
|
ffn_dim_multiplier: Optional[float],
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
|
|
# custom dim factor multiplier
|
|
|
|
if ffn_dim_multiplier is not None:
|
|
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
|
|
|
|
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
|
|
|
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
|
|
def init_weights(self, init_std: float):
|
|
|
|
nn.init.trunc_normal_(self.w1.weight, mean=0.0, std=0.02)
|
|
|
|
for linear in (self.w2, self.w3):
|
|
|
|
nn.init.trunc_normal_(linear.weight, mean=0.0, std=init_std)
|
|
|
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
"""TransformerBlock Module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
layer_id (int): Identifier for the layer.
|
|
|
|
model_args (ModelArgs): Model configuration arguments.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
n_heads (int): Number of attention heads.
|
|
|
|
dim (int): Dimension size of the model.
|
|
|
|
head_dim (int): Dimension size of each attention head.
|
|
|
|
attention (Attention): Attention module.
|
|
|
|
feed_forward (FeedForward): FeedForward module.
|
|
|
|
layer_id (int): Identifier for the layer.
|
|
|
|
attention_norm (RMSNorm): Layer normalization for attention output.
|
|
|
|
ffn_norm (RMSNorm): Layer normalization for feedforward output.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, layer_id: int, model_args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.n_heads = model_args.n_heads
|
|
|
|
self.dim = model_args.dim
|
|
|
|
self.attention = Attention(model_args)
|
|
|
|
self.feed_forward = FeedForward(
|
|
|
|
dim=model_args.dim,
|
|
|
|
hidden_dim=4 * model_args.dim,
|
|
|
|
multiple_of=model_args.multiple_of,
|
|
|
|
ffn_dim_multiplier=model_args.ffn_dim_multiplier,
|
|
|
|
)
|
|
|
|
self.layer_id = layer_id
|
|
|
|
self.num_layers = model_args.n_layers
|
|
|
|
|
|
|
|
self.attention_norm = RMSNorm(dim=model_args.dim, eps=model_args.norm_eps)
|
|
|
|
self.ffn_norm = RMSNorm(dim=model_args.dim, eps=model_args.norm_eps)
|
|
|
|
|
|
|
|
if model_args.depth_init:
|
|
|
|
self.weight_init_std = 0.02 / (2 * (self.layer_id + 1)) ** 0.5
|
|
|
|
else:
|
|
|
|
self.weight_init_std = 0.02 / (2 * self.num_layers) ** 0.5
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
x: torch.Tensor,
|
|
|
|
freqs_cis: torch.Tensor,
|
|
|
|
):
|
|
|
|
"""Perform a forward pass through the TransformerBlock.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Output tensor after applying attention and feedforward layers.
|
|
|
|
|
|
|
|
"""
|
|
|
|
h = x + self.attention(self.attention_norm(x), freqs_cis)
|
|
|
|
return h + self.feed_forward(self.ffn_norm(h))
|
|
|
|
|
|
|
|
def init_weights(self):
|
|
|
|
for norm in (self.attention_norm, self.ffn_norm):
|
|
|
|
norm.reset_parameters()
|
|
|
|
self.attention.init_weights(self.weight_init_std)
|
|
|
|
self.feed_forward.init_weights(self.weight_init_std)
|
|
|
|
|
|
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
|
"""Transformer Module.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_args (ModelArgs): Model configuration arguments.
|
|
|
|
|
|
|
|
Attributes:
|
|
|
|
model_args (ModelArgs): Model configuration arguments.
|
|
|
|
vocab_size (int): Vocabulary size.
|
|
|
|
n_layers (int): Number of layers in the model.
|
|
|
|
tok_embeddings (ParallelEmbedding): Token embeddings.
|
|
|
|
layers (torch.nn.ModuleList): List of Transformer blocks.
|
|
|
|
norm (RMSNorm): Layer normalization for the model output.
|
|
|
|
output (ColumnParallelLinear): Linear layer for final output.
|
|
|
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, model_args: ModelArgs):
|
|
|
|
super().__init__()
|
|
|
|
self.model_args = model_args
|
|
|
|
self.vocab_size = model_args.vocab_size
|
|
|
|
self.n_layers = model_args.n_layers
|
|
|
|
|
|
|
|
self.tok_embeddings = nn.Embedding(model_args.vocab_size, model_args.dim)
|
|
|
|
|
|
|
|
# TODO persistent should be set to false, since this buffer can be recomputed.
|
|
|
|
# however, we set it to true for 2 reasons. (1) due to pytorch/pytorch#123411,
|
|
|
|
# compile or pipeline-tracer will not correctly handle non-persistent buffers,
|
|
|
|
# so we need to fix that. (2) if we initialize pipeline-parallel models from
|
|
|
|
# a seed checkpoint rather than calling init_weights, we need freqs_cis to be
|
|
|
|
# initialized by the checkpoint, or we need to add a separate initializer for
|
|
|
|
# just the non-persistent buffers that is called after loading checkpoints.
|
|
|
|
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
|
|
|
|
|
|
|
|
self.layers = torch.nn.ModuleDict()
|
|
|
|
for layer_id in range(model_args.n_layers):
|
|
|
|
self.layers[str(layer_id)] = TransformerBlock(layer_id, model_args)
|
|
|
|
|
|
|
|
self.norm = RMSNorm(dim=model_args.dim, eps=model_args.norm_eps)
|
|
|
|
|
|
|
|
self.output = nn.Linear(model_args.dim, model_args.vocab_size, bias=False)
|
|
|
|
self.init_weights()
|
|
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
|
with torch.device(self.freqs_cis.device):
|
|
|
|
self.freqs_cis = self._precompute_freqs_cis()
|
|
|
|
|
|
|
|
def init_weights(self):
|
|
|
|
"""[Note: On ``init_weights`` vs.
|
|
|
|
|
|
|
|
``reset_parameters``]
|
|
|
|
Modules may define ``reset_parameters`` to initialize parameter values.
|
|
|
|
``reset_parameters`` is meant to only initialize directly owned
|
|
|
|
parameters/buffers, not those of their child modules, and it can be
|
|
|
|
used to give the initial values for these tensors.
|
|
|
|
Separately, users may want custom initialization for their modules,
|
|
|
|
different from that in ``reset_parameters``. For this, we define
|
|
|
|
``init_weights``. We only call it in the constructor of this
|
|
|
|
``Transformer`` root module to avoid reinitializing tensors.
|
|
|
|
|
|
|
|
"""
|
|
|
|
with torch.device(self.freqs_cis.device):
|
|
|
|
self.freqs_cis = self._precompute_freqs_cis()
|
|
|
|
nn.init.normal_(self.tok_embeddings.weight)
|
|
|
|
for layer in self.layers.values():
|
|
|
|
layer.init_weights()
|
|
|
|
self.norm.reset_parameters()
|
|
|
|
final_out_std = self.model_args.dim**-0.5
|
|
|
|
cutoff_factor = 3
|
|
|
|
nn.init.trunc_normal_(
|
|
|
|
self.output.weight,
|
|
|
|
mean=0.0,
|
|
|
|
std=final_out_std,
|
|
|
|
a=-cutoff_factor * final_out_std,
|
|
|
|
b=cutoff_factor * final_out_std,
|
|
|
|
)
|
|
|
|
|
|
|
|
def _precompute_freqs_cis(self) -> torch.Tensor:
|
|
|
|
return precompute_freqs_cis(
|
|
|
|
self.model_args.dim // self.model_args.n_heads,
|
|
|
|
# Need to compute until at least the max token limit for generation
|
|
|
|
# (use 2x max sequence length to be safe)
|
|
|
|
self.model_args.max_seq_len * 2,
|
|
|
|
self.model_args.rope_theta,
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, tokens: torch.Tensor):
|
|
|
|
"""Perform a forward pass through the Transformer model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens (torch.Tensor): Input token indices.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: Output logits after applying the Transformer model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
# passthrough for nonexistent layers, allows easy configuration of pipeline parallel stages
|
|
|
|
h = self.tok_embeddings(tokens) if self.tok_embeddings else tokens
|
|
|
|
|
|
|
|
for layer in self.layers.values():
|
|
|
|
h = layer(h, self.freqs_cis)
|
|
|
|
|
|
|
|
h = self.norm(h) if self.norm else h
|
|
|
|
return self.output(h).float() if self.output else h
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_model_args(cls, model_args: ModelArgs) -> "Transformer":
|
|
|
|
"""Initialize a Transformer model from a ModelArgs object.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_args (ModelArgs): Model configuration arguments.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Transformer: Transformer model.
|
|
|
|
|
|
|
|
"""
|
|
|
|
return cls(model_args)
|