2020-08-27 17:50:32 +00:00
|
|
|
import os
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
from pytorch_lightning.callbacks import GPUStatsMonitor
|
|
|
|
from pytorch_lightning.loggers import CSVLogger
|
|
|
|
from pytorch_lightning.loggers.csv_logs import ExperimentWriter
|
|
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
def test_gpu_stats_monitor(tmpdir):
|
|
|
|
"""
|
|
|
|
Test GPU stats are logged using a logger.
|
|
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
gpu_stats = GPUStatsMonitor()
|
|
|
|
logger = CSVLogger(tmpdir)
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
max_epochs=1,
|
|
|
|
gpus=1,
|
|
|
|
callbacks=[gpu_stats],
|
|
|
|
logger=logger
|
|
|
|
)
|
|
|
|
|
|
|
|
results = trainer.fit(model)
|
|
|
|
assert results
|
|
|
|
|
|
|
|
path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE)
|
|
|
|
with open(path_csv, 'r') as fp:
|
|
|
|
lines = fp.readlines()
|
|
|
|
|
|
|
|
header = lines[0].split()
|
|
|
|
|
|
|
|
fields = [
|
2020-09-04 10:02:16 +00:00
|
|
|
'utilization.gpu',
|
|
|
|
'memory.used',
|
|
|
|
'memory.free',
|
|
|
|
'utilization.memory'
|
2020-08-27 17:50:32 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
for f in fields:
|
|
|
|
assert any([f in h for h in header])
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(torch.cuda.is_available(), reason="test requires CPU machine")
|
|
|
|
def test_gpu_stats_monitor_cpu_machine(tmpdir):
|
|
|
|
"""
|
|
|
|
Test GPUStatsMonitor on CPU machine.
|
|
|
|
"""
|
|
|
|
with pytest.raises(MisconfigurationException, match='NVIDIA driver is not installed'):
|
|
|
|
gpu_stats = GPUStatsMonitor()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
def test_gpu_stats_monitor_no_logger(tmpdir):
|
|
|
|
"""
|
|
|
|
Test GPUStatsMonitor with no logger in Trainer.
|
|
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
gpu_stats = GPUStatsMonitor()
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
callbacks=[gpu_stats],
|
|
|
|
max_epochs=1,
|
|
|
|
gpus=1,
|
2020-09-25 05:30:30 +00:00
|
|
|
logger=False
|
2020-08-27 17:50:32 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
with pytest.raises(MisconfigurationException, match='Trainer that has no logger.'):
|
|
|
|
trainer.fit(model)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
|
|
def test_gpu_stats_monitor_no_gpu_warning(tmpdir):
|
|
|
|
"""
|
|
|
|
Test GPUStatsMonitor raises a warning when not training on GPU device.
|
|
|
|
"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
gpu_stats = GPUStatsMonitor()
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
|
default_root_dir=tmpdir,
|
|
|
|
callbacks=[gpu_stats],
|
|
|
|
max_steps=1,
|
|
|
|
gpus=None
|
|
|
|
)
|
|
|
|
|
2020-09-04 10:02:16 +00:00
|
|
|
with pytest.raises(MisconfigurationException, match='not running on GPU'):
|
2020-08-27 17:50:32 +00:00
|
|
|
trainer.fit(model)
|
2020-09-25 05:30:30 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_gpu_stats_monitor_parse_gpu_stats():
|
|
|
|
logs = GPUStatsMonitor._parse_gpu_stats('1,2', [[3, 4, 5], [6, 7]], [('gpu', 'a'), ('memory', 'b')])
|
|
|
|
expected = {'gpu_id: 1/gpu (a)': 3, 'gpu_id: 1/memory (b)': 4, 'gpu_id: 2/gpu (a)': 6, 'gpu_id: 2/memory (b)': 7}
|
|
|
|
assert logs == expected
|