lightning/tests/backends/test_ddp.py

58 lines
1.9 KiB
Python
Raw Normal View History

import pytest
import torch
import os
from tests.backends import ddp_model
from tests.utilities.dist import call_training_script
@pytest.mark.parametrize('cli_args', [
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
])
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_fit_only(tmpdir, cli_args):
# call the script
std, err = call_training_script(ddp_model, cli_args, 'fit', tmpdir, timeout=120)
# load the results of the script
result_path = os.path.join(tmpdir, 'ddp.result')
result = torch.load(result_path)
# verify the file wrote the expected outputs
assert result['status'] == 'complete'
@pytest.mark.parametrize('cli_args', [
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
])
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_test_only(tmpdir, cli_args):
# call the script
call_training_script(ddp_model, cli_args, 'test', tmpdir)
# load the results of the script
result_path = os.path.join(tmpdir, 'ddp.result')
result = torch.load(result_path)
# verify the file wrote the expected outputs
assert result['status'] == 'complete'
@pytest.mark.parametrize('cli_args', [
pytest.param('--max_epochs 1 --gpus 2 --distributed_backend ddp'),
])
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_multi_gpu_model_ddp_fit_test(tmpdir, cli_args):
# call the script
call_training_script(ddp_model, cli_args, 'fit_test', tmpdir, timeout=20)
# load the results of the script
result_path = os.path.join(tmpdir, 'ddp.result')
result = torch.load(result_path)
# verify the file wrote the expected outputs
assert result['status'] == 'complete'
model_outs = result['result']
for out in model_outs:
assert out['test_acc'] > 0.90