Welcome to the PyTorch Lightning community! We're building the most advanced research platform on the planet to implement the latest, best practices that the amazing PyTorch team rolls out!
When something becomes a best practice, we add it to the framework. This is usually something like bits of code in utils or in the model file that everyone keeps adding over and over again across projects. When this happens, bring that code inside the trainer and add a flag for it.
What makes sense to you may not make sense to others. When creating an issue with an API change suggestion, please validate that it makes sense for others.
We all hate updating our deep learning packages because we don't want to refactor a bunch of stuff. In Lightning, we make sure every change we make which could break an API is backward compatible with good deprecation warnings.
As a researcher, you can't have any part of your code going wrong. So, make thorough tests to ensure that every implementation of a new trick or subtle change is correct.
Have a favorite feature from other libraries like fast.ai or transformers? Those should just work with lightning as well. Grab your favorite model or learning rate scheduler from your favorite library and run it in Lightning.
A lot of good work has already been done in project mechanics (requirements/base.txt, setup.py, pep8, badges, ci, etc...) so we're in a good state there thanks to all the early contributors (even pre-beta release)!
_**Note**, even if you do not find the solution, sending a PR with a test covering the issue is a valid contribution and we can help you or finish it with you :]_
- [This PR](https://github.com/PyTorchLightning/pytorch-lightning/pull/2671) is a good example for adding a new metric, and [this one for a new logger](https://github.com/PyTorchLightning/pytorch-lightning/pull/2721).
Want to keep Lightning healthy? Love seeing those green tests? So do we! How to we keep it that way? We write tests! We value tests contribution even more than new features.
Most of the tests in PyTorch Lightning train a trial MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). The tests expect the model to perform to a reasonable degree of testing accuracy to pass. Want to add a new test case and not sure how? [Talk to us!](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)
If you use some third-party implementation, all such blocks/functions/modules shall be properly referred and if possible also agreed by code's author. For example - `This code is inspired from http://...`.
In case you adding new dependencies, make sure that they are compatible with the actual PyTorch Lightning license (ie. dependencies should be _at least_ as permissive as the PyTorch Lightning license).
**Docker:** Another option is utilize the [pytorch lightning cuda base docker image](https://hub.docker.com/repository/docker/pytorchlightning/pytorch_lightning/tags?page=1&name=cuda). You can then run:
0. Think about what you want to do - fix a bug, repair docs, etc. If you want to implement a new feature or enhance an existing one, start by opening a GitHub issue to explain the feature and the motivation. Members from core-contributors will take a look (it might take some time - we are often overloaded with issues!) and discuss it. Once an agreement was reached - start coding.
1. Start your work locally (usually until you need our CI testing).
- Create a branch and prepare your changes.
- Tip: do not work with your master directly, it may become complicated when you need to rebase.
All help is extremely welcome - reporting bugs, fixing documentation, adding test cases, solving issues and preparing bug fixes. To solve some issues you can start with label [good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22) or chose something close to your domain with label [help wanted](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22). Before you start to implement anything check that the issue description that it is clear and self-assign the task to you (if it is not possible, just comment that you take it and we assign it to you...).
We do not rely on the name convention so far you are working with your own fork. Anyway it would be nice to follow this convention `<type>/<issue-id>_<short-name>` where the types are: `bugfix`, `feature`, `docs`, `tests`, ...
We recommend creating a PR in separate branch other than `master`, especially if you plan submitting several changes and do not want to wait until the first one is resolved (we can work on them in parallel).
First, make sure you have set [upstream](https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/configuring-a-remote-for-a-fork) by running:
If you don't want to remember all the commands above every time you want to push some code/setup a Lightning Dev environment on a new VM, you can set up bash aliases for some common commands. You can add these to one of your `~/.bashrc`, `~/.zshrc`, or `~/.bash_aliases` files.
NOTE: Once you edit one of these files, remember to `source` it or restart your shell. (ex. `source ~/.bashrc` if you added these to your `~/.bashrc` file).