lightning/tests/checkpointing/test_checkpoint_callback_fr...

126 lines
4.5 KiB
Python
Raw Permalink Normal View History

2020-10-13 11:18:07 +00:00
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
import os
from unittest import mock
import pytest
import torch
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
from pytorch_lightning import callbacks, Trainer
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
def test_disabled_checkpointing(tmpdir):
ref: result 1/n (make monitor default to checkpoint_on to simplify re… (#3571) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * Update pytorch_lightning/callbacks/model_checkpoint.py Co-authored-by: ananthsub <ananth.subramaniam@gmail.com> * ref: result 1/n (make monitor default to checkpoint_on to simplify result syntax) * force crash when max_epochs < epochs in a checkpoint Co-authored-by: ananthsub <ananth.subramaniam@gmail.com>
2020-09-21 02:58:43 +00:00
# no callback
trainer = Trainer(max_epochs=3, enable_checkpointing=False)
assert not trainer.checkpoint_callbacks
trainer.fit(BoringModel())
assert not trainer.checkpoint_callbacks
@mock.patch("torch.save")
@pytest.mark.parametrize(
["epochs", "val_check_interval", "expected"], [(1, 1.0, 1), (2, 1.0, 2), (1, 0.25, 4), (2, 0.3, 6)]
)
def test_default_checkpoint_freq(save_mock, tmpdir, epochs: int, val_check_interval: float, expected: int):
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=epochs,
enable_model_summary=False,
val_check_interval=val_check_interval,
limit_val_batches=1,
enable_progress_bar=False,
)
trainer.fit(model)
# make sure types are correct
assert save_mock.call_count == expected
@mock.patch("torch.save")
@pytest.mark.parametrize(
["k", "epochs", "val_check_interval", "expected"], [(1, 1, 1.0, 1), (2, 2, 1.0, 2), (2, 1, 0.25, 4), (2, 2, 0.3, 6)]
)
@pytest.mark.parametrize("save_last", (False, True))
def test_top_k(save_mock, tmpdir, k: int, epochs: int, val_check_interval: float, expected: int, save_last: bool):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.last_coeff = 10.0
def training_step(self, batch, batch_idx):
loss = self.step(torch.ones(32))
loss = loss / (loss + 0.0000001)
loss += self.last_coeff
self.log("my_loss", loss)
self.last_coeff *= 0.999
return loss
model = TestModel()
trainer = Trainer(
callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss", save_top_k=k, save_last=save_last)],
default_root_dir=tmpdir,
max_epochs=epochs,
enable_model_summary=False,
val_check_interval=val_check_interval,
)
trainer.fit(model)
if save_last:
# last epochs are saved every step (so double the save calls)
expected = expected * 2
assert save_mock.call_count == expected
@mock.patch("torch.save")
2022-03-27 21:31:20 +00:00
@RunIf(min_gpus=2, standalone=True)
@pytest.mark.parametrize(["k", "epochs", "val_check_interval", "expected"], [(1, 1, 1.0, 1), (2, 2, 0.3, 4)])
def test_top_k_ddp(save_mock, tmpdir, k, epochs, val_check_interval, expected):
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
local_rank = int(os.getenv("LOCAL_RANK"))
self.log("my_loss", batch_idx * (1 + local_rank), on_epoch=True)
return super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs) -> None:
local_rank = int(os.getenv("LOCAL_RANK"))
if self.trainer.is_global_zero:
self.log("my_loss_2", (1 + local_rank), on_epoch=True, rank_zero_only=True)
data = str(self.global_rank)
obj = [[data], (data,), set(data)]
out = self.trainer.strategy.broadcast(obj)
assert obj == [[str(self.global_rank)], (str(self.global_rank),), set(str(self.global_rank))]
assert out == [["0"], ("0",), set("0")]
model = TestModel()
trainer = Trainer(
callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss_step", save_top_k=k, mode="max")],
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=epochs,
enable_model_summary=False,
val_check_interval=val_check_interval,
strategy="ddp",
accelerator="gpu",
devices=2,
limit_train_batches=64,
limit_val_batches=32,
)
trainer.fit(model)
if os.getenv("LOCAL_RANK") == "0":
assert save_mock.call_count == expected