lightning/tests/callbacks/test_finetuning_callback.py

426 lines
16 KiB
Python
Raw Permalink Normal View History

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
import pytest
import torch
from torch import nn
from torch.optim import Optimizer, SGD
from torch.utils.data import DataLoader
from pytorch_lightning import LightningModule, seed_everything, Trainer
from pytorch_lightning.callbacks import BackboneFinetuning, BaseFinetuning, ModelCheckpoint
from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_11
from tests.helpers import BoringModel, RandomDataset
class TestBackboneFinetuningCallback(BackboneFinetuning):
def on_train_epoch_start(self, trainer, pl_module):
super().on_train_epoch_start(trainer, pl_module)
epoch = trainer.current_epoch
if self.unfreeze_backbone_at_epoch <= epoch:
optimizer = trainer.optimizers[0]
current_lr = optimizer.param_groups[0]["lr"]
backbone_lr = self.previous_backbone_lr
if epoch < 6:
assert backbone_lr <= current_lr
else:
assert backbone_lr == current_lr
def test_finetuning_callback(tmpdir):
"""Test finetuning callbacks works as expected."""
seed_everything(42)
class FinetuningBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(nn.Linear(32, 32, bias=False), nn.BatchNorm1d(32), nn.ReLU())
self.layer = torch.nn.Linear(32, 2)
self.backbone.has_been_used = False
def training_step(self, batch, batch_idx):
output = self(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def forward(self, x):
self.backbone.has_been_used = True
x = self.backbone(x)
return self.layer(x)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.7)
return [optimizer], [lr_scheduler]
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
model = FinetuningBoringModel()
callback = TestBackboneFinetuningCallback(unfreeze_backbone_at_epoch=3, verbose=False)
trainer = Trainer(limit_train_batches=4, default_root_dir=tmpdir, callbacks=[callback], max_epochs=8)
trainer.fit(model)
assert model.backbone.has_been_used
class TestBackboneFinetuningWarningCallback(BackboneFinetuning):
def finetune_function(self, pl_module, epoch: int, optimizer, opt_idx: int):
"""Called when the epoch begins."""
if epoch == 0:
self.unfreeze_and_add_param_group(
pl_module.backbone, optimizer, 0.1, train_bn=self.train_bn, initial_denom_lr=self.initial_denom_lr
)
def test_finetuning_callback_warning(tmpdir):
"""Test finetuning callbacks works as expected."""
seed_everything(42)
class FinetuningBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.backbone = nn.Linear(32, 2, bias=False)
self.layer = None
self.backbone.has_been_used = False
def training_step(self, batch, batch_idx):
output = self(batch)
loss = self.loss(batch, output)
return {"loss": loss}
def forward(self, x):
self.backbone.has_been_used = True
x = self.backbone(x)
return x
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=0.1)
return optimizer
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = FinetuningBoringModel()
model.validation_step = None
callback = TestBackboneFinetuningWarningCallback(unfreeze_backbone_at_epoch=3, verbose=False)
with pytest.warns(UserWarning, match="Did you init your optimizer in"):
trainer = Trainer(limit_train_batches=1, default_root_dir=tmpdir, callbacks=[callback, chk], max_epochs=2)
trainer.fit(model)
assert model.backbone.has_been_used
trainer = Trainer(max_epochs=3)
trainer.fit(model, ckpt_path=chk.last_model_path)
def test_freeze_unfreeze_function(tmpdir):
"""Test freeze properly sets requires_grad on the modules."""
seed_everything(42)
class FreezeModel(LightningModule):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(nn.Linear(32, 32), nn.BatchNorm1d(32), nn.ReLU(), nn.Linear(32, 2))
model = FreezeModel()
BaseFinetuning.freeze(model, train_bn=True)
assert not model.backbone[0].weight.requires_grad
assert model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
BaseFinetuning.freeze(model, train_bn=False)
assert not model.backbone[0].weight.requires_grad
assert not model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
BaseFinetuning.make_trainable(model)
assert model.backbone[0].weight.requires_grad
assert model.backbone[1].weight.requires_grad
assert model.backbone[3].weight.requires_grad
BaseFinetuning.freeze(model.backbone[0], train_bn=False)
assert not model.backbone[0].weight.requires_grad
BaseFinetuning.freeze(([(model.backbone[1]), [model.backbone[3]]]), train_bn=True)
assert model.backbone[1].weight.requires_grad
assert not model.backbone[3].weight.requires_grad
def test_unfreeze_and_add_param_group_function(tmpdir):
"""Test unfreeze_and_add_param_group properly unfreeze parameters and add to the correct param_group."""
seed_everything(42)
class FreezeModel(LightningModule):
def __init__(self):
super().__init__()
self.backbone = nn.Sequential(
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=False),
nn.BatchNorm1d(32),
)
model = FreezeModel()
optimizer = SGD(model.backbone[0].parameters(), lr=0.01)
with pytest.warns(UserWarning, match="The provided params to be frozen already"):
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[0], optimizer=optimizer)
assert optimizer.param_groups[0]["lr"] == 0.01
model.backbone[1].weight.requires_grad = False
BaseFinetuning.unfreeze_and_add_param_group(model.backbone[1], optimizer=optimizer)
assert len(optimizer.param_groups) == 2
assert optimizer.param_groups[1]["lr"] == 0.001
assert torch.equal(optimizer.param_groups[1]["params"][0], model.backbone[1].weight)
assert model.backbone[1].weight.requires_grad
with pytest.warns(UserWarning, match="The provided params to be frozen already"):
BaseFinetuning.unfreeze_and_add_param_group(model, optimizer=optimizer, lr=100, train_bn=False)
assert len(optimizer.param_groups) == 3
assert optimizer.param_groups[2]["lr"] == 100
assert len(optimizer.param_groups[2]["params"]) == 3
for group_idx, group in enumerate(optimizer.param_groups):
if group_idx == 0:
assert torch.equal(optimizer.param_groups[0]["params"][0], model.backbone[0].weight)
if group_idx == 2:
assert torch.equal(optimizer.param_groups[2]["params"][0], model.backbone[2].weight)
assert torch.equal(optimizer.param_groups[2]["params"][1], model.backbone[3].weight)
assert torch.equal(optimizer.param_groups[2]["params"][2], model.backbone[4].weight)
PoC: Accelerator refactor (#5743) * restoring the result from subprocess * fix queue.get() order for results * add missing "block_backward_sync" context manager * add missing "block_backward_sync" context manager * fix sync_batchnorm * fix supported gpu-ids for tuple * fix clip gradients and inf recursion * accelerator selection: added cluster_environment plugin * fix torchelastic test * fix reduce early stopping decision for DDP * fix tests: callbacks, conversion to lightning optimizer * fix lightning optimizer does not pickle * fix setting benchmark and deterministic option * fix slurm amp test * fix prepare_data test and determine node_rank * fix retrieving last path when testing * remove obsolete plugin argument * fix test: test_trainer_config * fix torchscript tests * fix trainer.model access * move properties * fix test_transfer_batch_hook * fix auto_select_gpus * fix omegaconf test * fix test that needs to simulate slurm ddp * add horovod plugin * fix test with named arguments * clean up whitespace * fix datamodules test * remove old accelerators * fix naming * move old plugins * move to plugins * create precision subpackage * create training_type subpackage * fix all new import errors * fix wrong arguments order passed to test * fix LR finder * Added sharded training type and amp plugin * Move clip grad to precision plugin * Added sharded spawn, select accelerators based on distributed_backend + enable custom fp16 plugin automatically * Fix import issue, attempting to fix tests * Fix initial test * Reflect hook logic from master, should wrap model after move to device * Optional state consolidation, since master has optimizers not wrapped * change attribute for instance test * reset optimizers optimizers are not used in main process, so state would be wrong. * legacy * imports in accel * legacy2 * trainer imports * fix import errors after rebase * move hook to new setup location * provide unwrapping logic * fix trainer callback system * added ddp2 implementation * fix imports .legacy * move plugins * restore legacy * drop test.py from root * add tpu accelerator and plugins * fixes * fix lightning optimizer merge * reset bugreportmodel * unwrapping * step routing forward * model access * unwrap * opt * integrate distrib_type * sync changes * sync * fixes * add forgotten generators * add missing logic * update * import * missed imports * import fixes * isort * mv f * changelog * format * move helper to parallel plugin * d * add world size * clean up * duplicate * activate ddp_sharded and tpu * set nvidia flags * remove unused colab var * use_tpu <-> on_tpu attrs * make some ddp_cpu and clusterplugin tests pass * Ref/accelerator connector (#5742) * final cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * connector cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * trainer cleanup Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * accelerator cleanup + missing logic in accelerator connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add missing changes to callbacks Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * reflect accelerator changes to lightning module Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * clean cluster envs Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * cleanup plugins Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * add broadcasting Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * yapf * remove plugin connector Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * plugins * manual optimization * update optimizer routing * add rank to torchelastic * fix memory mixed precision * setstate on trainer for pickling in ddp spawn * add predict method * add back commented accelerator code * adapt test for sync_batch_norm to new plugin * fix deprecated tests * fix ddp cpu choice when no num_processes are given * yapf format * skip a memory test that cannot pass anymore * fix pickle error in spawn plugin * x * avoid * x * fix cyclic import in docs build * add support for sharded * update typing * add sharded and sharded_spawn to distributed types * make unwrap model default * refactor LightningShardedDataParallel similar to LightningDistributedDataParallel * update sharded spawn to reflect changes * update sharded to reflect changes * Merge 1.1.5 changes * fix merge * fix merge * yapf isort * fix merge * yapf isort * fix indentation in test * copy over reinit scheduler implementation from dev1.2 * fix apex tracking calls with dev_debugger * reduce diff to dev1.2, clean up * fix trainer config test when gpus>0 and num_processes >0 and ddp_cpu * sort plugin tests legacy/new * fix error handling for amp on cpu * fix merge fix merge fix merge * [Feat] Resolve manual_backward (#5837) * resolve manual_backward * resolve flake8 * update * resolve for ddp_spawn * resolve flake8 * resolve flake8 * resolve flake8 Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * fix tests/accelerator tests on cpu * [BugFix] Resolve manual optimization (#5852) * resolve manual_optimization * update * update Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * Remove copy trainer parameters to happen earlier within the loop and add safe guard to get ref model (#5856) * resovle a bug * Accelerator refactor sharded rpc (#5854) * rpc branch * merge * update handling of rpc * make devices etc. Optional in RPC * set devices etc. later if necessary * remove devices from sequential * make devices optional in rpc * fix import * uncomment everything * fix cluster selection Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> * resolve bug * fix assert in rpc test * resolve a test * fix docs compilation * accelerator refactor - fix for sharded parity test (#5866) * fix memory issue with ddp_spawn * x x x x x x x x x * x * Remove DDP2 as this does not apply * Add missing pre optimizer hook to ensure lambda closure is called * fix apex docstring * [accelerator][BugFix] Resolve some test for 1 gpu (#5863) * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * update * update * revert init * resolve a bug * update * resolve flake8 * update * update * update * revert init * update * resolve flake8 * update * update * update * update * update * all_gather * update * make plugins work, add misconfig for RPC * update * update * remove breaking test * resolve some tests * resolve flake8 * revert to ddp_spawn Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Justus Schock <justus.schock@rwth-aachen.de> * yapf isort * resolve flake8 * fix apex doctests * fix apex doctests 2 * resolve docs * update drone * clean env * update * update * update * update * merge * Fix RPC related tests, clean out old API, update for new accelerator API [skip ci] (#5881) * Fix RPC related tests, clean out old API, update for new accelerator API * Move tests out of legacy folder, update paths and names * Update test_remove_1-4.py * Expose properties for tpu cores/gpus/num_gpus * Add root GPU property * Move properties to properties.py * move tests that were previously in drone * Fix root GPU property (#5908) * Move root GPU to property, remove horovod set as this is handled in horovod plugin, ensure we mock correctly to set GPU accelerator * Add missing tests back * fix best model path transfer when no checkpoint callback available * Fix setup hook order [wip] (#5858) * Call trainer setup hook before accelerator setup * Add test case * add new test * typo * fix callback order in test Co-authored-by: tchaton <thomas@grid.ai> Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * rename ddp sequential -> rpc sequential for special test * revert * fix stupid merge problem * Use property in connector for sampler (#5913) * merge the import conflicts * fix spawning of processes in slurm * [wip] Fix some bugs for TPU [skip ci] (#5878) * fixed for single tpu * fixed spawn * fixed spawn * update * update * wip * resolve bugs * resolve bug * update on comment * removed decorator * resolve comments * set to 4 * update * update * need cleaning * update * update * update * resolve flake8 * resolve bugs * exclude broadcast * resolve bugs * change test * update * update * skip if meet fails * properly raise trace * update * add catch * wrap test * resolve typo * update * typo Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> * resolve some tests * update * fix imports * update * resolve flake8 * update azure pipeline * skip a sharded test on cpu that requires a gpu * resolve tpus * resolve bug * resolve flake8 * update * updat utils * revert permission change on files * suggestions from carlos Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting changes * remove incomplete comment * Update pytorch_lightning/accelerators/__init__.py Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> * remove unrelated formatting change * add types * warn 1.7 ddp manual backward only if ddp kwarg unset * yapf + isort * pep8 unused imports * fix cyclic import in docs * Apply suggestions from code review * typer in accelerator.py * typo * Apply suggestions from code review * formatting * update on comments * update typo * Update pytorch_lightning/trainer/properties.py Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> * update * suggestion from code review * suggestion from code review Co-authored-by: Adrian Wälchli <aedu.waelchli@gmail.com> Co-authored-by: SeanNaren <sean@grid.ai> Co-authored-by: Jirka Borovec <jirka.borovec@seznam.cz> Co-authored-by: chaton <thomas@grid.ai> Co-authored-by: Ubuntu <ubuntu@ip-172-31-88-60.ec2.internal> Co-authored-by: Sean Naren <sean.narenthiran@gmail.com> Co-authored-by: root <root@ip-172-31-88-60.ec2.internal> Co-authored-by: Lezwon Castelino <lezwon@gmail.com> Co-authored-by: Your Name <you@example.com> Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com> Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com> Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
2021-02-12 20:48:56 +00:00
class OnEpochLayerFinetuning(BaseFinetuning):
def freeze_before_training(self, pl_module: LightningModule):
self.freeze(pl_module.layer)
def finetune_function(self, pl_module: LightningModule, epoch: int, optimizer: Optimizer, opt_idx: int):
self.unfreeze_and_add_param_group(pl_module.layer[epoch + 1], optimizer)
def test_base_finetuning_internal_optimizer_metadata(tmpdir):
"""Test the param_groups updates are properly saved within the internal state of the BaseFinetuning
Callbacks."""
seed_everything(42)
class FreezeModel(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Sequential(
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=True),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 32, bias=True),
nn.Linear(32, 32, bias=False),
nn.Linear(32, 2, bias=True),
)
def forward(self, x):
return self.layer(x)
def configure_optimizers(self):
return torch.optim.SGD(self.layer[0].parameters(), lr=0.1)
cb = OnEpochLayerFinetuning()
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = FreezeModel()
trainer = Trainer(default_root_dir=tmpdir, max_epochs=5, limit_train_batches=1, callbacks=[cb, chk])
trainer.fit(model)
assert len(cb._internal_optimizer_metadata[0]) == 6
assert cb._internal_optimizer_metadata[0][0]["params"] == ["layer.0.weight"]
assert cb._internal_optimizer_metadata[0][1]["params"] == ["layer.1.weight", "layer.1.bias"]
assert cb._internal_optimizer_metadata[0][2]["params"] == ["layer.2.weight"]
assert cb._internal_optimizer_metadata[0][3]["params"] == ["layer.3.weight", "layer.3.bias"]
assert cb._internal_optimizer_metadata[0][4]["params"] == ["layer.4.weight"]
assert cb._internal_optimizer_metadata[0][5]["params"] == ["layer.5.weight", "layer.5.bias"]
model = FreezeModel()
cb = OnEpochLayerFinetuning()
trainer = Trainer(max_epochs=10, callbacks=[cb])
with pytest.raises(IndexError, match="index 6 is out of range"):
trainer.fit(model, ckpt_path=chk.last_model_path)
class ConvBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, 3)
self.act = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.conv(x)
x = self.act(x)
return self.bn(x)
class ConvBlockParam(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.module_dict = nn.ModuleDict({"conv": nn.Conv2d(in_channels, out_channels, 3), "act": nn.ReLU()})
# add trivial test parameter to convblock to validate parent (non-leaf) module parameter handling
self.parent_param = nn.Parameter(torch.zeros((1), dtype=torch.float))
self.bn = nn.BatchNorm2d(out_channels)
def forward(self, x):
x = self.module_dict["conv"](x)
x = self.module_dict["act"](x)
return self.bn(x)
def test_complex_nested_model():
"""Test flattening, freezing, and thawing of models which contain parent (non-leaf) modules with parameters
directly themselves rather than exclusively their submodules containing parameters."""
model = nn.Sequential(
OrderedDict(
[("encoder", nn.Sequential(ConvBlockParam(3, 64), ConvBlock(64, 128))), ("decoder", ConvBlock(128, 10))]
)
)
# There are 10 leaf modules or parent modules w/ parameters in the test model
assert len(BaseFinetuning.flatten_modules(model)) == 10
BaseFinetuning.freeze(model.encoder, train_bn=True)
assert not model.encoder[0].module_dict["conv"].weight.requires_grad # Validate a leaf module parameter is frozen
assert not model.encoder[0].parent_param.requires_grad # Validate the parent module parameter is frozen
assert model.encoder[0].bn.weight.requires_grad
BaseFinetuning.make_trainable(model)
encoder_params = list(BaseFinetuning.filter_params(model.encoder, train_bn=True))
# The 9 parameters of the encoder are:
# conv0.weight, conv0.bias, bn0.weight, bn0.bias, parent_param
# conv1.weight, conv1.bias, bn1.weight, bn1.bias
assert len(encoder_params) == 9
class TestCallbacksRestoreCallback(BaseFinetuning):
def freeze_before_training(self, pl_module):
self.freeze(pl_module.layer[:3])
def finetune_function(self, pl_module, epoch, optimizer, opt_idx):
if epoch >= 1:
self.unfreeze_and_add_param_group(pl_module.layer[epoch - 1], optimizer)
class FinetuningBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Sequential(nn.Linear(32, 32), nn.Linear(32, 32), nn.Linear(32, 32), nn.Linear(32, 2))
def configure_optimizers(self):
parameters = filter(lambda x: x.requires_grad, self.parameters())
optimizer = torch.optim.SGD(parameters, lr=0.1)
return optimizer
def test_callbacks_restore(tmpdir):
"""Test callbacks restore is called after optimizers have been re-created but before optimizer states
reload."""
chk = ModelCheckpoint(dirpath=tmpdir, save_last=True)
model = FinetuningBoringModel()
callback = TestCallbacksRestoreCallback()
trainer_kwargs = dict(
default_root_dir=tmpdir, limit_train_batches=1, limit_val_batches=1, callbacks=[callback, chk], max_epochs=2
)
trainer = Trainer(**trainer_kwargs)
trainer.fit(model)
# only 1 optimizer
assert len(callback._internal_optimizer_metadata) == 1
# only 2 param groups
assert len(callback._internal_optimizer_metadata[0]) == 2
# original parameters
expected = {
"lr": 0.1,
"momentum": 0,
"dampening": 0,
"weight_decay": 0,
"nesterov": False,
"params": ["layer.3.weight", "layer.3.bias"],
}
if _TORCH_GREATER_EQUAL_1_11:
expected["maximize"] = False
assert callback._internal_optimizer_metadata[0][0] == expected
# new param group
expected = {
"lr": 0.01,
"momentum": 0,
"dampening": 0,
"weight_decay": 0,
"nesterov": False,
"params": ["layer.0.weight", "layer.0.bias"],
}
if _TORCH_GREATER_EQUAL_1_11:
expected["maximize"] = False
assert callback._internal_optimizer_metadata[0][1] == expected
trainer_kwargs["max_epochs"] = 3
trainer = Trainer(**trainer_kwargs)
trainer.fit(model, ckpt_path=chk.last_model_path)
def test_callbacks_restore_backbone(tmpdir):
"""Test callbacks restore is called after optimizers have been re-created but before optimizer states
reload."""
class BackboneBoringModel(BoringModel):
def __init__(self):
super().__init__()
self.layer = nn.Linear(32, 2)
self.backbone = nn.Linear(32, 32)
def forward(self, x):
return self.layer(self.backbone(x))
ckpt = ModelCheckpoint(dirpath=tmpdir, save_last=True)
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=2,
enable_progress_bar=False,
callbacks=[ckpt, BackboneFinetuning(unfreeze_backbone_at_epoch=1)],
)
trainer.fit(BackboneBoringModel())
# initialize a trainer that continues the previous training
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=1,
max_epochs=3,
enable_progress_bar=False,
callbacks=BackboneFinetuning(unfreeze_backbone_at_epoch=1),
)
trainer.fit(BackboneBoringModel(), ckpt_path=ckpt.last_model_path)