117 lines
3.2 KiB
ReStructuredText
117 lines
3.2 KiB
ReStructuredText
|
:orphan:
|
||
|
|
||
|
##############################
|
||
|
Multiple Models and Optimizers
|
||
|
##############################
|
||
|
|
||
|
Fabric makes it very easy to work with multiple models and/or optimizers at once in your training workflow.
|
||
|
Examples of where this comes in handy are Generative Adversarial Networks (GANs), Auto-encoders, meta-learning and more.
|
||
|
|
||
|
|
||
|
----
|
||
|
|
||
|
************************
|
||
|
One model, one optimizer
|
||
|
************************
|
||
|
|
||
|
Fabric has a simple guideline you should follow:
|
||
|
If you have an optimizer, you should set it up together with the model to make your code truly strategy-agnostic.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import torch
|
||
|
from lightning.fabric import Fabric
|
||
|
|
||
|
fabric = Fabric()
|
||
|
|
||
|
# Instantiate model and optimizer
|
||
|
model = LitModel()
|
||
|
optimizer = torch.optim.Adam(model.parameters())
|
||
|
|
||
|
# Set up the model and optimizer together
|
||
|
model, optimizer = fabric.setup(model, optimizer)
|
||
|
|
||
|
|
||
|
Depending on the selected strategy, the :meth:`~lightning.fabric.fabric.Fabric.setup` method will wrap and link the model with the optimizer.
|
||
|
|
||
|
|
||
|
----
|
||
|
|
||
|
|
||
|
******************************
|
||
|
One model, multiple optimizers
|
||
|
******************************
|
||
|
|
||
|
You can also have multiple optimizers over a single model.
|
||
|
This is useful if you need specific optimizers or learning rates for parts of the model.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Instantiate model and optimizers
|
||
|
model = LitModel()
|
||
|
optimizer1 = torch.optim.SGD(model.layer1.parameters(), lr=0.003)
|
||
|
optimizer2 = torch.optim.SGD(model.layer2.parameters(), lr=0.01)
|
||
|
|
||
|
# Set up the model and optimizers together
|
||
|
model, optimizer1, optimizer2 = fabric.setup(model, optimizer1, optimizer2)
|
||
|
|
||
|
|
||
|
|
||
|
----
|
||
|
|
||
|
|
||
|
******************************
|
||
|
Multiple models, one optimizer
|
||
|
******************************
|
||
|
|
||
|
Using a single optimizer to update multiple models is possible too.
|
||
|
The best way to do this is to group all your individual models under one top level ``nn.Module``:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
class AutoEncoder(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
# Group all models under a common nn.Module
|
||
|
self.encoder = Encoder()
|
||
|
self.decoder = Decoder()
|
||
|
|
||
|
Now all of these models can be treated as a single one:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Instantiate the big model
|
||
|
autoencoder = AutoEncoder()
|
||
|
optimizer = ...
|
||
|
|
||
|
# Set up the model(s) and optimizer together
|
||
|
autoencoder, optimizer = fabric.setup(autoencoder, optimizer)
|
||
|
|
||
|
|
||
|
----
|
||
|
|
||
|
|
||
|
************************************
|
||
|
Multiple models, multiple optimizers
|
||
|
************************************
|
||
|
|
||
|
You can pair up as many models and optimizers as you want. For example, two models with one optimizer each:
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Two models
|
||
|
generator = Generator()
|
||
|
discriminator = Discriminator()
|
||
|
|
||
|
# Two optimizers
|
||
|
optimizer_gen = torch.optim.SGD(generator.parameters(), lr=0.01)
|
||
|
optimizer_dis = torch.optim.SGD(discriminator.parameters(), lr=0.001)
|
||
|
|
||
|
# Set up generator
|
||
|
generator, optimizer_gen = fabric.setup(generator, optimizer_gen)
|
||
|
# Set up discriminator
|
||
|
discriminator, optimizer_dis = fabric.setup(discriminator, optimizer_dis)
|
||
|
|
||
|
For a full example of this use case, see our `GAN example <https://github.com/Lightning-AI/lightning/blob/master/examples/fabric/dcgan>`_.
|