lark/lark/visitors.py

594 lines
21 KiB
Python

from typing import TypeVar, Tuple, List, Callable, Generic, Type, Union, Optional, Any, cast
from abc import ABC
from .utils import combine_alternatives
from .tree import Tree, Branch
from .exceptions import VisitError, GrammarError
from .lexer import Token
###{standalone
from functools import wraps, update_wrapper
from inspect import getmembers, getmro
_Return_T = TypeVar('_Return_T')
_Return_V = TypeVar('_Return_V')
_Leaf_T = TypeVar('_Leaf_T')
_Leaf_U = TypeVar('_Leaf_U')
_R = TypeVar('_R')
_FUNC = Callable[..., _Return_T]
_DECORATED = Union[_FUNC, type]
class _DiscardType:
"""When the Discard value is returned from a transformer callback,
that node is discarded and won't appear in the parent.
Note:
This feature is disabled when the transformer is provided to Lark
using the ``transformer`` keyword (aka Tree-less LALR mode).
Example:
::
class T(Transformer):
def ignore_tree(self, children):
return Discard
def IGNORE_TOKEN(self, token):
return Discard
"""
def __repr__(self):
return "lark.visitors.Discard"
Discard = _DiscardType()
# Transformers
class _Decoratable:
"Provides support for decorating methods with @v_args"
@classmethod
def _apply_v_args(cls, visit_wrapper):
mro = getmro(cls)
assert mro[0] is cls
libmembers = {name for _cls in mro[1:] for name, _ in getmembers(_cls)}
for name, value in getmembers(cls):
# Make sure the function isn't inherited (unless it's overwritten)
if name.startswith('_') or (name in libmembers and name not in cls.__dict__):
continue
if not callable(value):
continue
# Skip if v_args already applied (at the function level)
if isinstance(cls.__dict__[name], _VArgsWrapper):
continue
setattr(cls, name, _VArgsWrapper(cls.__dict__[name], visit_wrapper))
return cls
def __class_getitem__(cls, _):
return cls
class Transformer(_Decoratable, ABC, Generic[_Leaf_T, _Return_T]):
"""Transformers work bottom-up (or depth-first), starting with visiting the leaves and working
their way up until ending at the root of the tree.
For each node visited, the transformer will call the appropriate method (callbacks), according to the
node's ``data``, and use the returned value to replace the node, thereby creating a new tree structure.
Transformers can be used to implement map & reduce patterns. Because nodes are reduced from leaf to root,
at any point the callbacks may assume the children have already been transformed (if applicable).
If the transformer cannot find a method with the right name, it will instead call ``__default__``, which by
default creates a copy of the node.
To discard a node, return Discard (``lark.visitors.Discard``).
``Transformer`` can do anything ``Visitor`` can do, but because it reconstructs the tree,
it is slightly less efficient.
A transformer without methods essentially performs a non-memoized partial deepcopy.
All these classes implement the transformer interface:
- ``Transformer`` - Recursively transforms the tree. This is the one you probably want.
- ``Transformer_InPlace`` - Non-recursive. Changes the tree in-place instead of returning new instances
- ``Transformer_InPlaceRecursive`` - Recursive. Changes the tree in-place instead of returning new instances
Parameters:
visit_tokens (bool, optional): Should the transformer visit tokens in addition to rules.
Setting this to ``False`` is slightly faster. Defaults to ``True``.
(For processing ignored tokens, use the ``lexer_callbacks`` options)
"""
__visit_tokens__ = True # For backwards compatibility
def __init__(self, visit_tokens: bool=True) -> None:
self.__visit_tokens__ = visit_tokens
def _call_userfunc(self, tree, new_children=None):
# Assumes tree is already transformed
children = new_children if new_children is not None else tree.children
try:
f = getattr(self, tree.data)
except AttributeError:
return self.__default__(tree.data, children, tree.meta)
else:
try:
wrapper = getattr(f, 'visit_wrapper', None)
if wrapper is not None:
return f.visit_wrapper(f, tree.data, children, tree.meta)
else:
return f(children)
except GrammarError:
raise
except Exception as e:
raise VisitError(tree.data, tree, e)
def _call_userfunc_token(self, token):
try:
f = getattr(self, token.type)
except AttributeError:
return self.__default_token__(token)
else:
try:
return f(token)
except GrammarError:
raise
except Exception as e:
raise VisitError(token.type, token, e)
def _transform_children(self, children):
for c in children:
if isinstance(c, Tree):
res = self._transform_tree(c)
elif self.__visit_tokens__ and isinstance(c, Token):
res = self._call_userfunc_token(c)
else:
res = c
if res is not Discard:
yield res
def _transform_tree(self, tree):
children = list(self._transform_children(tree.children))
return self._call_userfunc(tree, children)
def transform(self, tree: Tree[_Leaf_T]) -> _Return_T:
"Transform the given tree, and return the final result"
return self._transform_tree(tree)
def __mul__(
self: 'Transformer[_Leaf_T, Tree[_Leaf_U]]',
other: 'Union[Transformer[_Leaf_U, _Return_V], TransformerChain[_Leaf_U, _Return_V,]]'
) -> 'TransformerChain[_Leaf_T, _Return_V]':
"""Chain two transformers together, returning a new transformer.
"""
return TransformerChain(self, other)
def __default__(self, data, children, meta):
"""Default function that is called if there is no attribute matching ``data``
Can be overridden. Defaults to creating a new copy of the tree node (i.e. ``return Tree(data, children, meta)``)
"""
return Tree(data, children, meta)
def __default_token__(self, token):
"""Default function that is called if there is no attribute matching ``token.type``
Can be overridden. Defaults to returning the token as-is.
"""
return token
def merge_transformers(base_transformer=None, **transformers_to_merge):
"""Merge a collection of transformers into the base_transformer, each into its own 'namespace'.
When called, it will collect the methods from each transformer, and assign them to base_transformer,
with their name prefixed with the given keyword, as ``prefix__methodname``.
This function is especially useful for processing grammars that import other grammars,
thereby creating some of their rules in a 'namespace'. (i.e with a consistent name prefix).
In this case, the key for the transformer should match the name of the imported grammar.
Parameters:
base_transformer (Transformer, optional): The transformer that all other transformers will be added to.
**transformers_to_merge: Keyword arguments, in the form of ``name_prefix = transformer``.
Raises:
AttributeError: In case of a name collision in the merged methods
Example:
::
class TBase(Transformer):
def start(self, children):
return children[0] + 'bar'
class TImportedGrammar(Transformer):
def foo(self, children):
return "foo"
composed_transformer = merge_transformers(TBase(), imported=TImportedGrammar())
t = Tree('start', [ Tree('imported__foo', []) ])
assert composed_transformer.transform(t) == 'foobar'
"""
if base_transformer is None:
base_transformer = Transformer()
for prefix, transformer in transformers_to_merge.items():
for method_name in dir(transformer):
method = getattr(transformer, method_name)
if not callable(method):
continue
if method_name.startswith("_") or method_name == "transform":
continue
prefixed_method = prefix + "__" + method_name
if hasattr(base_transformer, prefixed_method):
raise AttributeError("Cannot merge: method '%s' appears more than once" % prefixed_method)
setattr(base_transformer, prefixed_method, method)
return base_transformer
class InlineTransformer(Transformer): # XXX Deprecated
def _call_userfunc(self, tree, new_children=None):
# Assumes tree is already transformed
children = new_children if new_children is not None else tree.children
try:
f = getattr(self, tree.data)
except AttributeError:
return self.__default__(tree.data, children, tree.meta)
else:
return f(*children)
class TransformerChain(Generic[_Leaf_T, _Return_T]):
transformers: 'Tuple[Union[Transformer, TransformerChain], ...]'
def __init__(self, *transformers: 'Union[Transformer, TransformerChain]') -> None:
self.transformers = transformers
def transform(self, tree: Tree[_Leaf_T]) -> _Return_T:
for t in self.transformers:
tree = t.transform(tree)
return cast(_Return_T, tree)
def __mul__(
self: 'TransformerChain[_Leaf_T, Tree[_Leaf_U]]',
other: 'Union[Transformer[_Leaf_U, _Return_V], TransformerChain[_Leaf_U, _Return_V]]'
) -> 'TransformerChain[_Leaf_T, _Return_V]':
return TransformerChain(*self.transformers + (other,))
class Transformer_InPlace(Transformer[_Leaf_T, _Return_T]):
"""Same as Transformer, but non-recursive, and changes the tree in-place instead of returning new instances
Useful for huge trees. Conservative in memory.
"""
def _transform_tree(self, tree): # Cancel recursion
return self._call_userfunc(tree)
def transform(self, tree: Tree[_Leaf_T]) -> _Return_T:
for subtree in tree.iter_subtrees():
subtree.children = list(self._transform_children(subtree.children))
return self._transform_tree(tree)
class Transformer_NonRecursive(Transformer[_Leaf_T, _Return_T]):
"""Same as Transformer but non-recursive.
Like Transformer, it doesn't change the original tree.
Useful for huge trees.
"""
def transform(self, tree: Tree[_Leaf_T]) -> _Return_T:
# Tree to postfix
rev_postfix = []
q: List[Branch[_Leaf_T]] = [tree]
while q:
t = q.pop()
rev_postfix.append(t)
if isinstance(t, Tree):
q += t.children
# Postfix to tree
stack: List = []
for x in reversed(rev_postfix):
if isinstance(x, Tree):
size = len(x.children)
if size:
args = stack[-size:]
del stack[-size:]
else:
args = []
res = self._call_userfunc(x, args)
if res is not Discard:
stack.append(res)
elif self.__visit_tokens__ and isinstance(x, Token):
res = self._call_userfunc_token(x)
if res is not Discard:
stack.append(res)
else:
stack.append(x)
result, = stack # We should have only one tree remaining
# There are no guarantees on the type of the value produced by calling a user func for a
# child will produce. This means type system can't statically know that the final result is
# _Return_T. As a result a cast is required.
return cast(_Return_T, result)
class Transformer_InPlaceRecursive(Transformer):
"Same as Transformer, recursive, but changes the tree in-place instead of returning new instances"
def _transform_tree(self, tree):
tree.children = list(self._transform_children(tree.children))
return self._call_userfunc(tree)
# Visitors
class VisitorBase:
def _call_userfunc(self, tree):
return getattr(self, tree.data, self.__default__)(tree)
def __default__(self, tree):
"""Default function that is called if there is no attribute matching ``tree.data``
Can be overridden. Defaults to doing nothing.
"""
return tree
def __class_getitem__(cls, _):
return cls
class Visitor(VisitorBase, ABC, Generic[_Leaf_T]):
"""Tree visitor, non-recursive (can handle huge trees).
Visiting a node calls its methods (provided by the user via inheritance) according to ``tree.data``
"""
def visit(self, tree: Tree[_Leaf_T]) -> Tree[_Leaf_T]:
"Visits the tree, starting with the leaves and finally the root (bottom-up)"
for subtree in tree.iter_subtrees():
self._call_userfunc(subtree)
return tree
def visit_topdown(self, tree: Tree[_Leaf_T]) -> Tree[_Leaf_T]:
"Visit the tree, starting at the root, and ending at the leaves (top-down)"
for subtree in tree.iter_subtrees_topdown():
self._call_userfunc(subtree)
return tree
class Visitor_Recursive(VisitorBase, Generic[_Leaf_T]):
"""Bottom-up visitor, recursive.
Visiting a node calls its methods (provided by the user via inheritance) according to ``tree.data``
Slightly faster than the non-recursive version.
"""
def visit(self, tree: Tree[_Leaf_T]) -> Tree[_Leaf_T]:
"Visits the tree, starting with the leaves and finally the root (bottom-up)"
for child in tree.children:
if isinstance(child, Tree):
self.visit(child)
self._call_userfunc(tree)
return tree
def visit_topdown(self,tree: Tree[_Leaf_T]) -> Tree[_Leaf_T]:
"Visit the tree, starting at the root, and ending at the leaves (top-down)"
self._call_userfunc(tree)
for child in tree.children:
if isinstance(child, Tree):
self.visit_topdown(child)
return tree
class Interpreter(_Decoratable, ABC, Generic[_Leaf_T, _Return_T]):
"""Interpreter walks the tree starting at the root.
Visits the tree, starting with the root and finally the leaves (top-down)
For each tree node, it calls its methods (provided by user via inheritance) according to ``tree.data``.
Unlike ``Transformer`` and ``Visitor``, the Interpreter doesn't automatically visit its sub-branches.
The user has to explicitly call ``visit``, ``visit_children``, or use the ``@visit_children_decor``.
This allows the user to implement branching and loops.
"""
def visit(self, tree: Tree[_Leaf_T]) -> _Return_T:
# There are no guarantees on the type of the value produced by calling a user func for a
# child will produce. So only annotate the public method and use an internal method when
# visiting child trees.
return self._visit_tree(tree)
def _visit_tree(self, tree: Tree[_Leaf_T]):
f = getattr(self, tree.data)
wrapper = getattr(f, 'visit_wrapper', None)
if wrapper is not None:
return f.visit_wrapper(f, tree.data, tree.children, tree.meta)
else:
return f(tree)
def visit_children(self, tree: Tree[_Leaf_T]) -> List:
return [self._visit_tree(child) if isinstance(child, Tree) else child
for child in tree.children]
def __getattr__(self, name):
return self.__default__
def __default__(self, tree):
return self.visit_children(tree)
_InterMethod = Callable[[Type[Interpreter], _Return_T], _R]
def visit_children_decor(func: _InterMethod) -> _InterMethod:
"See Interpreter"
@wraps(func)
def inner(cls, tree):
values = cls.visit_children(tree)
return func(cls, values)
return inner
# Decorators
def _apply_v_args(obj, visit_wrapper):
try:
_apply = obj._apply_v_args
except AttributeError:
return _VArgsWrapper(obj, visit_wrapper)
else:
return _apply(visit_wrapper)
class _VArgsWrapper:
"""
A wrapper around a Callable. It delegates `__call__` to the Callable.
If the Callable has a `__get__`, that is also delegate and the resulting function is wrapped.
Otherwise, we use the original function mirroring the behaviour without a __get__.
We also have the visit_wrapper attribute to be used by Transformers.
"""
base_func: Callable
def __init__(self, func: Callable, visit_wrapper: Callable[[Callable, str, list, Any], Any]):
if isinstance(func, _VArgsWrapper):
func = func.base_func
# https://github.com/python/mypy/issues/708
self.base_func = func # type: ignore[assignment]
self.visit_wrapper = visit_wrapper
update_wrapper(self, func)
def __call__(self, *args, **kwargs):
return self.base_func(*args, **kwargs)
def __get__(self, instance, owner=None):
try:
# Use the __get__ attribute of the type instead of the instance
# to fully mirror the behavior of getattr
g = type(self.base_func).__get__
except AttributeError:
return self
else:
return _VArgsWrapper(g(self.base_func, instance, owner), self.visit_wrapper)
def __set_name__(self, owner, name):
try:
f = type(self.base_func).__set_name__
except AttributeError:
return
else:
f(self.base_func, owner, name)
def _vargs_inline(f, _data, children, _meta):
return f(*children)
def _vargs_meta_inline(f, _data, children, meta):
return f(meta, *children)
def _vargs_meta(f, _data, children, meta):
return f(meta, children)
def _vargs_tree(f, data, children, meta):
return f(Tree(data, children, meta))
def v_args(inline: bool = False, meta: bool = False, tree: bool = False, wrapper: Optional[Callable] = None) -> Callable[[_DECORATED], _DECORATED]:
"""A convenience decorator factory for modifying the behavior of user-supplied visitor methods.
By default, callback methods of transformers/visitors accept one argument - a list of the node's children.
``v_args`` can modify this behavior. When used on a transformer/visitor class definition,
it applies to all the callback methods inside it.
``v_args`` can be applied to a single method, or to an entire class. When applied to both,
the options given to the method take precedence.
Parameters:
inline (bool, optional): Children are provided as ``*args`` instead of a list argument (not recommended for very long lists).
meta (bool, optional): Provides two arguments: ``meta`` and ``children`` (instead of just the latter)
tree (bool, optional): Provides the entire tree as the argument, instead of the children.
wrapper (function, optional): Provide a function to decorate all methods.
Example:
::
@v_args(inline=True)
class SolveArith(Transformer):
def add(self, left, right):
return left + right
@v_args(meta=True)
def mul(self, meta, children):
logger.info(f'mul at line {meta.line}')
left, right = children
return left * right
class ReverseNotation(Transformer_InPlace):
@v_args(tree=True)
def tree_node(self, tree):
tree.children = tree.children[::-1]
"""
if tree and (meta or inline):
raise ValueError("Visitor functions cannot combine 'tree' with 'meta' or 'inline'.")
func = None
if meta:
if inline:
func = _vargs_meta_inline
else:
func = _vargs_meta
elif inline:
func = _vargs_inline
elif tree:
func = _vargs_tree
if wrapper is not None:
if func is not None:
raise ValueError("Cannot use 'wrapper' along with 'tree', 'meta' or 'inline'.")
func = wrapper
def _visitor_args_dec(obj):
return _apply_v_args(obj, func)
return _visitor_args_dec
###}
# --- Visitor Utilities ---
class CollapseAmbiguities(Transformer):
"""
Transforms a tree that contains any number of _ambig nodes into a list of trees,
each one containing an unambiguous tree.
The length of the resulting list is the product of the length of all _ambig nodes.
Warning: This may quickly explode for highly ambiguous trees.
"""
def _ambig(self, options):
return sum(options, [])
def __default__(self, data, children_lists, meta):
return [Tree(data, children, meta) for children in combine_alternatives(children_lists)]
def __default_token__(self, t):
return [t]