diff --git a/lark/parsers/earley.py b/lark/parsers/earley.py index 20a6ee8..dfe13c7 100644 --- a/lark/parsers/earley.py +++ b/lark/parsers/earley.py @@ -17,8 +17,8 @@ from functools import cmp_to_key from ..utils import compare from ..common import ParseError, UnexpectedToken, Terminal -from .grammar_analysis import GrammarAnalyzer from ..tree import Tree, Visitor_NoRecurse, Transformer_NoRecurse +from .grammar_analysis import GrammarAnalyzer class EndToken: @@ -32,6 +32,8 @@ class Derivation(Tree): END_TOKEN = EndToken() class Item(object): + "An Earley Item, the atom of the algorithm." + def __init__(self, rule, ptr, start, tree): self.rule = rule self.ptr = ptr @@ -77,7 +79,7 @@ class NewsList(list): class Column: - "An entry in the table, aka Earley Chart" + "An entry in the table, aka Earley Chart. Contains lists of items." def __init__(self, i): self.i = i self.to_reduce = NewsList() @@ -94,7 +96,6 @@ class Column: Makes sure only unique items are added. """ - added = self.added for item in items: if item.is_complete: @@ -112,8 +113,8 @@ class Column: self.completed[item] = item self.to_reduce.append(item) else: - if item not in added: - added.add(item) + if item not in self.added: + self.added.add(item) if isinstance(item.expect, Terminal): self.to_scan.append(item) else: @@ -125,9 +126,9 @@ class Column: return bool(self.item_count) class Parser: - def __init__(self, rules, start, callback, resolve_ambiguity=True): - self.analysis = GrammarAnalyzer(rules, start) - self.start = start + def __init__(self, rules, start_symbol, callback, resolve_ambiguity=True): + self.analysis = GrammarAnalyzer(rules, start_symbol) + self.start_symbol = start_symbol self.resolve_ambiguity = resolve_ambiguity self.postprocess = {} @@ -138,60 +139,57 @@ class Parser: self.postprocess[rule] = a if callable(a) else (a and getattr(callback, a)) self.predictions[rule.origin] = [x.rule for x in self.analysis.expand_rule(rule.origin)] - def parse(self, stream, start=None): + def parse(self, stream, start_symbol=None): # Define parser functions - start = start or self.start + start_symbol = start_symbol or self.start_symbol - def predict(nonterm, i): + def predict(nonterm, column): assert not isinstance(nonterm, Terminal), nonterm - return [Item(rule, 0, i, None) for rule in self.predictions[nonterm]] + return [Item(rule, 0, column, None) for rule in self.predictions[nonterm]] def complete(item): name = item.rule.origin return [i.advance(item.tree) for i in item.start.to_predict if i.expect == name] - def process_column(i, token, cur_set): - next_set = Column(i) - + def predict_and_complete(column): while True: - to_predict = {x.expect for x in cur_set.to_predict.get_news() + to_predict = {x.expect for x in column.to_predict.get_news() if x.ptr} # if not part of an already predicted batch - to_reduce = cur_set.to_reduce.get_news() + to_reduce = column.to_reduce.get_news() if not (to_predict or to_reduce): break for nonterm in to_predict: - cur_set.add( predict(nonterm, cur_set) ) + column.add( predict(nonterm, column) ) for item in to_reduce: - cur_set.add( complete(item) ) + column.add( complete(item) ) - if token is not END_TOKEN: - to_scan = cur_set.to_scan.get_news() - for item in to_scan: - if item.expect.match(token): - next_set.add([item.advance(token)]) + def scan(i, token, column): + to_scan = column.to_scan.get_news() - if not next_set and token is not END_TOKEN: - expect = {i.expect for i in cur_set.to_scan} + next_set = Column(i) + next_set.add(item.advance(token) for item in to_scan if item.expect.match(token)) + + if not next_set: + expect = {i.expect for i in column.to_scan} raise UnexpectedToken(token, expect, stream, i) - return cur_set, next_set + return next_set # Main loop starts column0 = Column(0) - column0.add(predict(start, column0)) + column0.add(predict(start_symbol, column0)) - cur_set = column0 - i = 0 - for token in stream: - _, cur_set = process_column(i, token, cur_set) - i += 1 + column = column0 + for i, token in enumerate(stream): + predict_and_complete(column) + column = scan(i, token, column) - last_set, _ = process_column(i, END_TOKEN, cur_set) + predict_and_complete(column) # Parse ended. Now build a parse tree - solutions = [n.tree for n in last_set.to_reduce - if n.rule.origin==start and n.start is column0] + solutions = [n.tree for n in column.to_reduce + if n.rule.origin==start_symbol and n.start is column0] if not solutions: raise ParseError('Incomplete parse: Could not find a solution to input')