from kivy.properties import StringProperty, DictProperty from datastore import DataStore # Data from http://www.fda.gov/Food/LabelingNutrition/\ # FoodLabelingGuidanceRegulatoryInformation/\ # InformationforRestaurantsRetailEstablishments/\ # ucm063482.htm fruit_categories = \ {'Melons': {'fruits': ['Cantaloupe', 'Honeydew', 'Watermelon'], 'is_selected': False}, 'Tree Fruits': {'fruits': ['Apple', 'Avocado', 'Banana', 'Nectarine', 'Peach', 'Pear', 'Pineapple', 'Plum', 'Cherry'], 'is_selected': False}, 'Citrus Fruits': {'fruits': ['Grapefruit', 'Lemon', 'Lime', 'Orange', 'Tangerine'], 'is_selected': False}, 'Miscellaneous Fruits': {'fruits': ['Grape', 'Kiwifruit', 'Strawberry'], 'is_selected': False}} descriptors = """(gram weight/ ounce weight) Calories Calories from Fa t Total Fat Sodium Potassium Total Carbo-hydrate Dietary Fiber Suga rs Protein Vitamin A Vitamin C Calcium Iron""".replace('\n', '') descriptors = [item.strip() for item in descriptors.split('\t')] units = """(g) (%DV) (mg) (%DV) (mg) (%DV) (g) (%DV) (g) (%DV) (g) (g) (%DV) (%DV) (%DV) (%DV)""".replace('\n', '') units = [item.strip() for item in units.split('\t')] raw_fruit_data = [ {'name':'Apple', 'Serving Size': '1 large (242 g/8 oz)', 'data': [130, 0, 0, 0, 0, 0, 260, 7, 34, 11, 5, 20, 25, 1, 2, 8, 2, 2], 'is_selected': False}, {'name':'Avocado', 'Serving Size': '1/5 medium (30 g/1.1 oz)', 'data': [50, 35, 4.5, 7, 0, 0, 140, 4, 3, 1, 1, 4, 0, 1, 0, 4, 0, 2], 'is_selected': False}, {'name':'Banana', 'Serving Size': '1 medium (126 g/4.5 oz)', 'data': [110, 0, 0, 0, 0, 0, 450, 13, 30, 10, 3, 12, 19, 1, 2, 15, 0, 2], 'is_selected': False}, {'name':'Cantaloupe', 'Serving Size': '1/4 medium (134 g/4.8 oz)', 'data': [50, 0, 0, 0, 20, 1, 240, 7, 12, 4, 1, 4, 11, 1, 120, 80, 2, 2], 'is_selected': False}, {'name':'Grapefruit', 'Serving Size': '1/2 medium (154 g/5.5 oz)', 'data': [60, 0, 0, 0, 0, 0, 160, 5, 15, 5, 2, 8, 11, 1, 35, 100, 4, 0], 'is_selected': False}, {'name':'Grape', 'Serving Size': '3/4 cup (126 g/4.5 oz)', 'data': [90, 0, 0, 0, 15, 1, 240, 7, 23, 8, 1, 4, 20, 0, 0, 2, 2, 0], 'is_selected': False}, {'name':'Honeydew', 'Serving Size': '1/10 medium melon (134 g/4.8 oz)', 'data': [50, 0, 0, 0, 30, 1, 210, 6, 12, 4, 1, 4, 11, 1, 2, 45, 2, 2], 'is_selected': False}, {'name':'Kiwifruit', 'Serving Size': '2 medium (148 g/5.3 oz)', 'data': [90, 10, 1, 2, 0, 0, 450, 13, 20, 7, 4, 16, 13, 1, 2, 240, 4, 2], 'is_selected': False}, {'name':'Lemon', 'Serving Size': '1 medium (58 g/2.1 oz)', 'data': [15, 0, 0, 0, 0, 0, 75, 2, 5, 2, 2, 8, 2, 0, 0, 40, 2, 0], 'is_selected': False}, {'name':'Lime', 'Serving Size': '1 medium (67 g/2.4 oz)', 'data': [20, 0, 0, 0, 0, 0, 75, 2, 7, 2, 2, 8, 0, 0, 0, 35, 0, 0], 'is_selected': False}, {'name':'Nectarine', 'Serving Size': '1 medium (140 g/5.0 oz)', 'data': [60, 5, 0.5, 1, 0, 0, 250, 7, 15, 5, 2, 8, 11, 1, 8, 15, 0, 2], 'is_selected': False}, {'name':'Orange', 'Serving Size': '1 medium (154 g/5.5 oz)', 'data': [80, 0, 0, 0, 0, 0, 250, 7, 19, 6, 3, 12, 14, 1, 2, 130, 6, 0], 'is_selected': False}, {'name':'Peach', 'Serving Size': '1 medium (147 g/5.3 oz)', 'data': [60, 0, 0.5, 1, 0, 0, 230, 7, 15, 5, 2, 8, 13, 1, 6, 15, 0, 2], 'is_selected': False}, {'name':'Pear', 'Serving Size': '1 medium (166 g/5.9 oz)', 'data': [100, 0, 0, 0, 0, 0, 190, 5, 26, 9, 6, 24, 16, 1, 0, 10, 2, 0], 'is_selected': False}, {'name':'Pineapple', 'Serving Size': '2 slices, 3" diameter, 3/4" thick (112 g/4 oz)', 'data': [50, 0, 0, 0, 10, 0, 120, 3, 13, 4, 1, 4, 10, 1, 2, 50, 2, 2], 'is_selected': False}, {'name':'Plum', 'Serving Size': '2 medium (151 g/5.4 oz)', 'data': [70, 0, 0, 0, 0, 0, 230, 7, 19, 6, 2, 8, 16, 1, 8, 10, 0, 2], 'is_selected': False}, {'name':'Strawberry', 'Serving Size': '8 medium (147 g/5.3 oz)', 'data': [50, 0, 0, 0, 0, 0, 170, 5, 11, 4, 2, 8, 8, 1, 0, 160, 2, 2], 'is_selected': False}, {'name':'Cherry', 'Serving Size': '21 cherries; 1 cup (140 g/5.0 oz)', 'data': [100, 0, 0, 0, 0, 0, 350, 10, 26, 9, 1, 4, 16, 1, 2, 15, 2, 2], 'is_selected': False}, {'name':'Tangerine', 'Serving Size': '1 medium (109 g/3.9 oz)', 'data': [50, 0, 0, 0, 0, 0, 160, 5, 13, 4, 2, 8, 9, 1, 6, 45, 4, 0], 'is_selected': False}, {'name':'Watermelon', 'Serving Size': '1/18 medium melon; 2 cups diced pieces (280 g/10.0 oz)', 'data': [80, 0, 0, 0, 0, 0, 270, 8, 21, 7, 1, 4, 20, 1, 30, 25, 2, 4], 'is_selected': False}] fruit_data = {} descriptors_and_units = dict(zip(descriptors, units)) for row in raw_fruit_data: fruit_data[row['name']] = {} fruit_data[row['name']] = dict({'Serving Size': row['Serving Size'], 'is_selected': row['is_selected']}, **dict(zip(descriptors_and_units.keys(), row['data']))) # See the dictionary definitions above for fruit category and raw data # creation. From those dictionaries, we define two datastores that will be # used in the examples: datastore_categories = DataStore(name='categories', db_dict=fruit_categories) datastore_fruits = DataStore(name='fruits', db_dict=fruit_data)