# Iced [![Build status](https://ci.appveyor.com/api/projects/status/xldctwks3we9tcb4/branch/master?svg=true)](https://ci.appveyor.com/project/0xd4d/iced/branch/master) [![NuGet](https://img.shields.io/nuget/v/Iced.svg)](https://www.nuget.org/packages/Iced/) High performance x86 (16/32/64-bit) instruction decoder, encoder and formatter. It can be used for static analysis of x86/x64 binaries, to rewrite code (eg. remove garbage instructions), to relocate code or as a disassembler. - Supports all Intel and AMD instructions - The decoder doesn't allocate any memory and is 2x-5x+ faster than other similar libraries written in C or C# - Small decoded instructions, only 32 bytes - The formatter supports masm, nasm, gas (AT&T) and Intel (xed) and there are many options to customize the output - The encoder can be used to re-encode decoded instructions at any address - The block encoder encodes a list of instructions and optimizes branches to short, near or 'long' (64-bit: 1 or more instructions) - API to get instruction info, eg. read/written registers, memory and rflags bits; CPUID feature flag, flow control info, etc - All instructions are tested (decode, encode, format, instruction info) # Classes See below for some examples. All classes are in the `Iced.Intel` namespace. Decoder: - `Decoder` - `Instruction` - `CodeReader` - `ByteArrayCodeReader` - `InstructionList` - `ConstantOffsets` Formatters: - `Formatter` - `MasmFormatter` - `NasmFormatter` - `GasFormatter` - `IntelFormatter` - `FormatterOptions` - `MasmFormatterOptions` - `NasmFormatterOptions` - `GasFormatterOptions` - `IntelFormatterOptions` - `FormatterOutput` - `StringBuilderFormatterOutput` - `SymbolResolver` Encoder: - `Encoder` - `BlockEncoder` - `CodeWriter` - `ConstantOffsets` Instruction info: - `Instruction.GetInfo()` - `InstructionInfo` - `InstructionInfoFactory` - `InstructionInfoExtensions` - `MemorySizeExtensions` - `RegisterExtensions` # Examples ```C# using System; using System.Collections.Generic; using Iced.Intel; namespace Iced.Examples { static class Program { static void Main(string[] args) { DecoderFormatterExample(); EncoderExample(); InstructionInfoExample(); } const int exampleCodeBitness = 64; const ulong exampleCodeRIP = 0x00007FFAC46ACDA4; static readonly byte[] exampleCode = new byte[] { 0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D, 0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05, 0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B, 0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF }; /* * This method produces the following output: 00007FFAC46ACDA4 mov [rsp+10h],rbx 00007FFAC46ACDA9 mov [rsp+18h],rsi 00007FFAC46ACDAE push rbp 00007FFAC46ACDAF push rdi 00007FFAC46ACDB0 push r14 00007FFAC46ACDB2 lea rbp,[rsp-100h] 00007FFAC46ACDBA sub rsp,200h 00007FFAC46ACDC1 mov rax,[rel 7FFA`C475`24E0h] 00007FFAC46ACDC8 xor rax,rsp 00007FFAC46ACDCB mov [rbp+0F0h],rax 00007FFAC46ACDD2 mov r8,[rel 7FFA`C474`F208h] 00007FFAC46ACDD9 lea rax,[rel 7FFA`C46F`4A58h] 00007FFAC46ACDE0 xor edi,edi */ static void DecoderFormatterExample() { // You can also pass in a hex string, eg. "90 91 929394", or you can use your own CodeReader // reading data from a file or memory etc var codeReader = new ByteArrayCodeReader(exampleCode); var decoder = Decoder.Create(exampleCodeBitness, codeReader); decoder.InstructionPointer = exampleCodeRIP; ulong endRip = decoder.InstructionPointer + (uint)exampleCode.Length; // This list is faster than List since it uses refs to the Instructions // instead of copying them (each Instruction is 32 bytes in size). It has a ref indexer, // and a ref iterator. Add() uses 'in' (ref readonly). var instructions = new InstructionList(); while (decoder.InstructionPointer < endRip) { // The method allocates an uninitialized element at the end of the list and // returns a reference to it which is initialized by Decode(). decoder.Decode(out instructions.AllocUninitializedElement()); } // Formatters: Masm*, Nasm*, Gas* (AT&T) and Intel* (Intel XED) var formatter = new NasmFormatter(); formatter.Options.DigitSeparator = "`"; formatter.Options.FirstOperandCharIndex = 10; var output = new StringBuilderFormatterOutput(); // Use InstructionList's ref iterator (C# 7.3) to prevent copying 32 bytes every iteration foreach (ref var instr in instructions) { // Don't use instr.ToString(), it allocates more, uses masm syntax and default options formatter.Format(ref instr, output); Console.WriteLine($"{instr.IP64:X16} {output.ToStringAndReset()}"); } } /* * This method produces the following output: New code bytes: 0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D 0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05 0x18, 0x57, 0xEA, 0xFF, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B 0x05, 0x2F, 0x24, 0xEA, 0xFF, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0xE4, 0xFF, 0x33, 0xFF Disassembled code: 00007FFAC48ACDA4 mov [rsp+10h],rbx 00007FFAC48ACDA9 mov [rsp+18h],rsi 00007FFAC48ACDAE push rbp 00007FFAC48ACDAF push rdi 00007FFAC48ACDB0 push r14 00007FFAC48ACDB2 lea rbp,[rsp-100h] 00007FFAC48ACDBA sub rsp,200h 00007FFAC48ACDC1 mov rax,[rel 7FFA`C475`24E0h] 00007FFAC48ACDC8 xor rax,rsp 00007FFAC48ACDCB mov [rbp+0F0h],rax 00007FFAC48ACDD2 mov r8,[rel 7FFA`C474`F208h] 00007FFAC48ACDD9 lea rax,[rel 7FFA`C46F`4A58h] 00007FFAC48ACDE0 xor edi,edi */ static void EncoderExample() { var codeReader = new ByteArrayCodeReader(exampleCode); var decoder = Decoder.Create(exampleCodeBitness, codeReader); decoder.InstructionPointer = exampleCodeRIP; ulong endRip = decoder.InstructionPointer + (uint)exampleCode.Length; var instructions = new InstructionList(); while (decoder.InstructionPointer < endRip) decoder.Decode(out instructions.AllocUninitializedElement()); // Relocate the code to some new location. It can fix short/near branches and // convert them to short/near/long forms if needed. This also works even if it's a // jrcxz/loop/loopcc instruction which only has a short form. // // It can currently only fix RIP relative operands if the new location is within 2GB // of the target data location. // // There's also a simpler Encoder class which is used by BlockEncoder, but it can only // encode one instruction at a time and doesn't fix branches. // // Note that a block is not the same thing as a basic block. A block can contain any // number of instructions, including any number of branch instructions. One block // should be enough unless you must relocate different blocks to different locations. var codeWriter = new CodeWriterImpl(); ulong relocatedBaseAddress = exampleCodeRIP + 0x200000; var block = new InstructionBlock(codeWriter, instructions, relocatedBaseAddress); // This method can also encode more than one block but that's rarely needed, see above comment. var errorMessage = BlockEncoder.Encode(decoder.Bitness, block); if (errorMessage != null) { Console.WriteLine($"ERROR: {errorMessage}"); return; } var newCode = codeWriter.ToArray(); Console.WriteLine("New code bytes:"); for (int i = 0; i < newCode.Length;) { for (int j = 0; j < 16 && i < newCode.Length; i++, j++) { if (j != 0) Console.Write(", "); Console.Write("0x"); Console.Write(newCode[i].ToString("X2")); } Console.WriteLine(); } // Disassemble the new relocated code. It's identical to the original code except that // the RIP relative instructions have been updated. Console.WriteLine("Disassembled code:"); var formatter = new NasmFormatter(); formatter.Options.DigitSeparator = "`"; formatter.Options.FirstOperandCharIndex = 10; var output = new StringBuilderFormatterOutput(); var newDecoder = Decoder.Create(decoder.Bitness, new ByteArrayCodeReader(newCode)); newDecoder.InstructionPointer = block.RIP; endRip = newDecoder.InstructionPointer + (uint)newCode.Length; while (newDecoder.InstructionPointer < endRip) { newDecoder.Decode(out var instr); formatter.Format(ref instr, output); Console.WriteLine($"{instr.IP64:X16} {output.ToStringAndReset()}"); } } // Simple and inefficient code writer that stores the data in a List, with a ToArray() method // to get the data sealed class CodeWriterImpl : CodeWriter { readonly List allBytes = new List(); public override void WriteByte(byte value) => allBytes.Add(value); public byte[] ToArray() => allBytes.ToArray(); } /* * This method produces the following output: 00007FFAC46ACDA4 mov [rsp+10h],rbx Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: Read RSP:Read RBX:Read SS:RSP+0x10;UInt64;Write 00007FFAC46ACDA9 mov [rsp+18h],rsi Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: Read RSP:Read RSI:Read SS:RSP+0x18;UInt64;Write 00007FFAC46ACDAE push rbp Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next SP Increment: -8 Op0Access: Read RBP:Read RSP:ReadWrite SS:RSP+0xFFFFFFFFFFFFFFF8;UInt64;Write 00007FFAC46ACDAF push rdi Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next SP Increment: -8 Op0Access: Read RDI:Read RSP:ReadWrite SS:RSP+0xFFFFFFFFFFFFFFF8;UInt64;Write 00007FFAC46ACDB0 push r14 Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next SP Increment: -8 Op0Access: Read R14:Read RSP:ReadWrite SS:RSP+0xFFFFFFFFFFFFFFF8;UInt64;Write 00007FFAC46ACDB2 lea rbp,[rsp-100h] Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: NoMemAccess RBP:Write RSP:Read 00007FFAC46ACDBA sub rsp,200h Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next RFLAGS Written: OF, SF, ZF, AF, CF, PF RFLAGS Modified: OF, SF, ZF, AF, CF, PF Op0Access: ReadWrite Op1Access: Read RSP:ReadWrite 00007FFAC46ACDC1 mov rax,[7FFAC47524E0h] Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: Read RAX:Write DS:0x7FFAC47524E0;UInt64;Read 00007FFAC46ACDC8 xor rax,rsp Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next RFLAGS Written: SF, ZF, PF RFLAGS Cleared: OF, CF RFLAGS Undefined: AF RFLAGS Modified: OF, SF, ZF, AF, CF, PF Op0Access: ReadWrite Op1Access: Read RAX:ReadWrite RSP:Read 00007FFAC46ACDCB mov [rbp+0F0h],rax Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: Read RBP:Read RAX:Read SS:RBP+0xF0;UInt64;Write 00007FFAC46ACDD2 mov r8,[7FFAC474F208h] Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: Read R8:Write DS:0x7FFAC474F208;UInt64;Read 00007FFAC46ACDD9 lea rax,[7FFAC46F4A58h] Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next Op0Access: Write Op1Access: NoMemAccess RAX:Write 00007FFAC46ACDE0 xor edi,edi Encoding: Legacy CpuidFeature: INTEL8086 FlowControl: Next RFLAGS Cleared: OF, SF, CF RFLAGS Set: ZF, PF RFLAGS Undefined: AF RFLAGS Modified: OF, SF, ZF, AF, CF, PF Op0Access: Write Op1Access: None RDI:Write */ static void InstructionInfoExample() { var codeReader = new ByteArrayCodeReader(exampleCode); var decoder = Decoder.Create(exampleCodeBitness, codeReader); decoder.InstructionPointer = exampleCodeRIP; ulong endRip = decoder.InstructionPointer + (uint)exampleCode.Length; // For PERF, use a factory to create the instruction info if you need register // and memory usage. If it's something else, eg. encoding, flags, etc, there // are properties on Instruction that can be used instead that don't allocate. // The factory only allocates once and reuses the internal arrays; calling // Instruction.GetInfo() allocates every single call. var instrInfoFactory = new InstructionInfoFactory(); while (decoder.InstructionPointer < endRip) { decoder.Decode(out var instr); // A formatter is recommended since this ToString() method defaults to masm syntax, // uses default options, and allocates every single time it's called. var disasmStr = instr.ToString(); Console.WriteLine($"{instr.IP64:X16} {disasmStr}"); var info = instrInfoFactory.GetInfo(ref instr); const string tab = " "; Console.WriteLine($"{tab}Encoding: {info.Encoding}"); Console.WriteLine($"{tab}CpuidFeature: {info.CpuidFeature}"); Console.WriteLine($"{tab}FlowControl: {info.FlowControl}"); if (info.StackInstruction) Console.WriteLine($"{tab}SP Increment: {instr.StackPointerIncrement}"); if (instr.RflagsRead != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Read: {instr.RflagsRead}"); if (instr.RflagsWritten != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Written: {instr.RflagsWritten}"); if (instr.RflagsCleared != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Cleared: {instr.RflagsCleared}"); if (instr.RflagsSet != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Set: {instr.RflagsSet}"); if (instr.RflagsUndefined != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Undefined: {instr.RflagsUndefined}"); if (instr.RflagsModified != RflagsBits.None) Console.WriteLine($"{tab}RFLAGS Modified: {instr.RflagsModified}"); for (int i = 0; i < instr.OpCount; i++) Console.WriteLine($"{tab}Op{i}Access: {info.GetOpAccess(i)}"); // The returned iterator is a struct, nothing is allocated unless you box it foreach (var regInfo in info.GetUsedRegisters()) Console.WriteLine($"{tab}{regInfo.ToString()}"); foreach (var memInfo in info.GetUsedMemory()) Console.WriteLine($"{tab}{memInfo.ToString()}"); } } } } ``` # License LGPL v3 or any later version (LGPL = GNU Lesser General Public License) # Credits Logo `processor` by [Creative Stall](https://thenounproject.com/creativestall/) from the Noun Project