mirror of https://github.com/icedland/iced.git
Split up example code into smaller how-tos
This commit is contained in:
parent
3cb30c17d8
commit
4d577ea27e
837
README.md
837
README.md
|
@ -7,8 +7,8 @@ High performance x86 (16/32/64-bit) instruction decoder, disassembler and assemb
|
|||
It can be used for static analysis of x86/x64 binaries, to rewrite code (eg. remove garbage instructions), to relocate code or as a disassembler.
|
||||
|
||||
- Supports all Intel and AMD instructions
|
||||
- High level [Assembler](#Assembler) providing a simple and lean syntax (e.g `asm.mov(eax, edx)`))
|
||||
- [Decoding](#Decoding) and disassembler support:
|
||||
- High level [Assembler](#assemble-instructions) providing a simple and lean syntax (e.g `asm.mov(eax, edx)`))
|
||||
- [Decoding](#disassemble-decode-and-format-instructions) and disassembler support:
|
||||
- The decoder doesn't allocate any memory and is 2x-5x+ faster than other similar libraries written in C or C#
|
||||
- Small decoded instructions, only 32 bytes
|
||||
- The formatter supports masm, nasm, gas (AT&T), Intel (XED) and there are many options to customize the output
|
||||
|
@ -17,7 +17,8 @@ It can be used for static analysis of x86/x64 binaries, to rewrite code (eg. rem
|
|||
- The block encoder encodes a list of instructions and optimizes branches to short, near or 'long' (64-bit: 1 or more instructions)
|
||||
- API to get instruction info, eg. read/written registers, memory and rflags bits; CPUID feature flag, flow control info, etc
|
||||
- All instructions are tested (decode, encode, format, instruction info)
|
||||
- Supports of `.NET Standard 2.0/2.1+` and `.NET Framework 4.5+`
|
||||
- Supports `.NET Standard 2.0/2.1+` and `.NET Framework 4.5+`
|
||||
- License: MIT
|
||||
|
||||
# Classes
|
||||
|
||||
|
@ -28,8 +29,8 @@ Decoder:
|
|||
- `Decoder`
|
||||
- `Instruction` (and `Instruction.Create()` methods)
|
||||
- `CodeReader`
|
||||
- `ByteArrayCodeReader`
|
||||
- `StreamCodeReader`
|
||||
- `ByteArrayCodeReader`
|
||||
- `StreamCodeReader`
|
||||
- `InstructionList`
|
||||
- `ConstantOffsets`
|
||||
- `IcedFeatures.Initialize()`
|
||||
|
@ -37,20 +38,26 @@ Decoder:
|
|||
Formatters:
|
||||
|
||||
- `Formatter`
|
||||
- `MasmFormatter`
|
||||
- `NasmFormatter`
|
||||
- `GasFormatter`
|
||||
- `IntelFormatter`
|
||||
- `MasmFormatter`
|
||||
- `NasmFormatter`
|
||||
- `GasFormatter`
|
||||
- `IntelFormatter`
|
||||
- `FormatterOptions`
|
||||
- `MasmFormatterOptions`
|
||||
- `NasmFormatterOptions`
|
||||
- `GasFormatterOptions`
|
||||
- `IntelFormatterOptions`
|
||||
- `MasmFormatterOptions`
|
||||
- `NasmFormatterOptions`
|
||||
- `GasFormatterOptions`
|
||||
- `IntelFormatterOptions`
|
||||
- `FormatterOutput`
|
||||
- `StringOutput`
|
||||
- `StringOutput`
|
||||
- `ISymbolResolver`
|
||||
- `IFormatterOptionsProvider`
|
||||
|
||||
Assembler:
|
||||
|
||||
- `Assembler`
|
||||
- `Label`
|
||||
- `AssemblerRegisters` (use `using static` to have access directly to registers e.g `eax`, `rdi`, `xmm1`...)
|
||||
|
||||
Encoder:
|
||||
|
||||
- `Encoder`
|
||||
|
@ -68,46 +75,24 @@ Instruction info:
|
|||
- `MemorySizeExtensions`
|
||||
- `RegisterExtensions`
|
||||
|
||||
High Level Assembler:
|
||||
# How-tos
|
||||
|
||||
- `Assembler`
|
||||
- `Label`
|
||||
- `AssemblerRegisters` (use `using static` to have access directly to registers e.g `eax`, `rdi`, `xmm1`...)
|
||||
- [Disassemble (decode and format instructions)](#disassemble-decode-and-format-instructions)
|
||||
- [Assemble instructions](#assemble-instructions)
|
||||
- [Disassemble with a symbol resolver](#disassemble-with-a-symbol-resolver)
|
||||
- [Disassemble with colorized text](#disassemble-with-colorized-text)
|
||||
- [Move code in memory (eg. hook a function)](#move-code-in-memory-eg-hook-a-function)
|
||||
- [Get instruction info, eg. read/written regs/mem, control flow info, etc](#get-instruction-info-eg-readwritten-regsmem-control-flow-info-etc)
|
||||
|
||||
# Examples
|
||||
|
||||
## Decoding
|
||||
|
||||
For another example, see [JitDasm](https://github.com/0xd4d/JitDasm).
|
||||
## Disassemble (decode and format instructions)
|
||||
|
||||
```C#
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using Iced.Intel;
|
||||
|
||||
namespace Iced.Examples {
|
||||
static class Program {
|
||||
const int HEXBYTES_COLUMN_BYTE_LENGTH = 10;
|
||||
|
||||
static void Main(string[] args) {
|
||||
IcedFeatures.Initialize();
|
||||
DecoderFormatterExample();
|
||||
EncoderExample();
|
||||
CreateInstructionsExample();
|
||||
InstructionInfoExample();
|
||||
}
|
||||
|
||||
const int exampleCodeBitness = 64;
|
||||
const ulong exampleCodeRIP = 0x00007FFAC46ACDA4;
|
||||
static readonly byte[] exampleCode = new byte[] {
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D,
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05,
|
||||
0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B,
|
||||
0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF
|
||||
};
|
||||
|
||||
/*
|
||||
* This method produces the following output:
|
||||
static class HowTo_Disassemble {
|
||||
/*
|
||||
* This method produces the following output:
|
||||
00007FFAC46ACDA4 48895C2410 mov [rsp+10h],rbx
|
||||
00007FFAC46ACDA9 4889742418 mov [rsp+18h],rsi
|
||||
00007FFAC46ACDAE 55 push rbp
|
||||
|
@ -121,217 +106,358 @@ namespace Iced.Examples {
|
|||
00007FFAC46ACDD2 4C8B052F240A00 mov r8,[rel 7FFA`C474`F208h]
|
||||
00007FFAC46ACDD9 488D05787C0400 lea rax,[rel 7FFA`C46F`4A58h]
|
||||
00007FFAC46ACDE0 33FF xor edi,edi
|
||||
*/
|
||||
static void DecoderFormatterExample() {
|
||||
// You can also pass in a hex string, eg. "90 91 929394", or you can use your own CodeReader
|
||||
// reading data from a file or memory etc
|
||||
var codeBytes = exampleCode;
|
||||
var codeReader = new ByteArrayCodeReader(codeBytes);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
ulong endRip = decoder.IP + (uint)codeBytes.Length;
|
||||
*/
|
||||
public static void Example() {
|
||||
// You can also pass in a hex string, eg. "90 91 929394", or you can use your own CodeReader
|
||||
// reading data from a file or memory etc
|
||||
var codeBytes = exampleCode;
|
||||
var codeReader = new ByteArrayCodeReader(codeBytes);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
ulong endRip = decoder.IP + (uint)codeBytes.Length;
|
||||
|
||||
// This list is faster than List<Instruction> since it uses refs to the Instructions
|
||||
// instead of copying them (each Instruction is 32 bytes in size). It has a ref indexer,
|
||||
// and a ref iterator. Add() uses 'in' (ref readonly).
|
||||
var instructions = new InstructionList();
|
||||
while (decoder.IP < endRip) {
|
||||
// The method allocates an uninitialized element at the end of the list and
|
||||
// returns a reference to it which is initialized by Decode().
|
||||
decoder.Decode(out instructions.AllocUninitializedElement());
|
||||
}
|
||||
|
||||
// Formatters: Masm*, Nasm*, Gas* (AT&T) and Intel* (XED)
|
||||
var formatter = new NasmFormatter();
|
||||
formatter.Options.DigitSeparator = "`";
|
||||
formatter.Options.FirstOperandCharIndex = 10;
|
||||
var output = new StringOutput();
|
||||
// Use InstructionList's ref iterator (C# 7.3) to prevent copying 32 bytes every iteration
|
||||
foreach (ref var instr in instructions) {
|
||||
// Don't use instr.ToString(), it allocates more, uses masm syntax and default options
|
||||
formatter.Format(instr, output);
|
||||
Console.Write(instr.IP.ToString("X16"));
|
||||
Console.Write(" ");
|
||||
int instrLen = instr.Length;
|
||||
int byteBaseIndex = (int)(instr.IP - exampleCodeRIP);
|
||||
for (int i = 0; i < instrLen; i++)
|
||||
Console.Write(codeBytes[byteBaseIndex + i].ToString("X2"));
|
||||
int missingBytes = HEXBYTES_COLUMN_BYTE_LENGTH - instrLen;
|
||||
for (int i = 0; i < missingBytes; i++)
|
||||
Console.Write(" ");
|
||||
Console.Write(" ");
|
||||
Console.WriteLine(output.ToStringAndReset());
|
||||
}
|
||||
// This list is faster than List<Instruction> since it uses refs to the Instructions
|
||||
// instead of copying them (each Instruction is 32 bytes in size). It has a ref indexer,
|
||||
// and a ref iterator. Add() uses 'in' (ref readonly).
|
||||
var instructions = new InstructionList();
|
||||
while (decoder.IP < endRip) {
|
||||
// The method allocates an uninitialized element at the end of the list and
|
||||
// returns a reference to it which is initialized by Decode().
|
||||
decoder.Decode(out instructions.AllocUninitializedElement());
|
||||
}
|
||||
|
||||
/*
|
||||
* This method produces the following output:
|
||||
New code bytes:
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05
|
||||
0x18, 0x57, 0xEA, 0xFF, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B
|
||||
0x05, 0x2F, 0x24, 0xEA, 0xFF, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0xE4, 0xFF, 0x33, 0xFF
|
||||
Disassembled code:
|
||||
00007FFAC48ACDA4 mov [rsp+10h],rbx
|
||||
00007FFAC48ACDA9 mov [rsp+18h],rsi
|
||||
00007FFAC48ACDAE push rbp
|
||||
00007FFAC48ACDAF push rdi
|
||||
00007FFAC48ACDB0 push r14
|
||||
00007FFAC48ACDB2 lea rbp,[rsp-100h]
|
||||
00007FFAC48ACDBA sub rsp,200h
|
||||
00007FFAC48ACDC1 mov rax,[rel 7FFA`C475`24E0h]
|
||||
00007FFAC48ACDC8 xor rax,rsp
|
||||
00007FFAC48ACDCB mov [rbp+0F0h],rax
|
||||
00007FFAC48ACDD2 mov r8,[rel 7FFA`C474`F208h]
|
||||
00007FFAC48ACDD9 lea rax,[rel 7FFA`C46F`4A58h]
|
||||
00007FFAC48ACDE0 xor edi,edi
|
||||
*/
|
||||
static void EncoderExample() {
|
||||
var codeReader = new ByteArrayCodeReader(exampleCode);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
ulong endRip = decoder.IP + (uint)exampleCode.Length;
|
||||
|
||||
var instructions = new InstructionList();
|
||||
while (decoder.IP < endRip)
|
||||
decoder.Decode(out instructions.AllocUninitializedElement());
|
||||
|
||||
// Relocate the code to some new location. It can fix short/near branches and
|
||||
// convert them to short/near/long forms if needed. This also works even if it's a
|
||||
// jrcxz/loop/loopcc instruction which only has a short form.
|
||||
//
|
||||
// It can currently only fix RIP relative operands if the new location is within 2GB
|
||||
// of the target data location.
|
||||
//
|
||||
// There's also a simpler Encoder class which is used by BlockEncoder, but it can only
|
||||
// encode one instruction at a time and doesn't fix branches.
|
||||
//
|
||||
// Note that a block is not the same thing as a basic block. A block can contain any
|
||||
// number of instructions, including any number of branch instructions. One block
|
||||
// should be enough unless you must relocate different blocks to different locations.
|
||||
var codeWriter = new CodeWriterImpl();
|
||||
ulong relocatedBaseAddress = exampleCodeRIP + 0x200000;
|
||||
var block = new InstructionBlock(codeWriter, instructions, relocatedBaseAddress);
|
||||
// This method can also encode more than one block but that's rarely needed, see above comment.
|
||||
bool success = BlockEncoder.TryEncode(decoder.Bitness, block, out var errorMessage, out _);
|
||||
if (!success) {
|
||||
Console.WriteLine($"ERROR: {errorMessage}");
|
||||
return;
|
||||
}
|
||||
var newCode = codeWriter.ToArray();
|
||||
Console.WriteLine("New code bytes:");
|
||||
for (int i = 0; i < newCode.Length;) {
|
||||
for (int j = 0; j < 16 && i < newCode.Length; i++, j++) {
|
||||
if (j != 0)
|
||||
Console.Write(", ");
|
||||
Console.Write("0x");
|
||||
Console.Write(newCode[i].ToString("X2"));
|
||||
}
|
||||
Console.WriteLine();
|
||||
}
|
||||
|
||||
// Disassemble the new relocated code. It's identical to the original code except that
|
||||
// the RIP relative instructions have been updated.
|
||||
Console.WriteLine("Disassembled code:");
|
||||
var formatter = new NasmFormatter();
|
||||
formatter.Options.DigitSeparator = "`";
|
||||
formatter.Options.FirstOperandCharIndex = 10;
|
||||
var output = new StringOutput();
|
||||
var newDecoder = Decoder.Create(decoder.Bitness, new ByteArrayCodeReader(newCode));
|
||||
newDecoder.IP = block.RIP;
|
||||
endRip = newDecoder.IP + (uint)newCode.Length;
|
||||
while (newDecoder.IP < endRip) {
|
||||
newDecoder.Decode(out var instr);
|
||||
formatter.Format(instr, output);
|
||||
Console.WriteLine($"{instr.IP:X16} {output.ToStringAndReset()}");
|
||||
}
|
||||
// Formatters: Masm*, Nasm*, Gas* (AT&T) and Intel* (XED)
|
||||
var formatter = new NasmFormatter();
|
||||
formatter.Options.DigitSeparator = "`";
|
||||
formatter.Options.FirstOperandCharIndex = 10;
|
||||
var output = new StringOutput();
|
||||
// Use InstructionList's ref iterator (C# 7.3) to prevent copying 32 bytes every iteration
|
||||
foreach (ref var instr in instructions) {
|
||||
// Don't use instr.ToString(), it allocates more, uses masm syntax and default options
|
||||
formatter.Format(instr, output);
|
||||
Console.Write(instr.IP.ToString("X16"));
|
||||
Console.Write(" ");
|
||||
int instrLen = instr.Length;
|
||||
int byteBaseIndex = (int)(instr.IP - exampleCodeRIP);
|
||||
for (int i = 0; i < instrLen; i++)
|
||||
Console.Write(codeBytes[byteBaseIndex + i].ToString("X2"));
|
||||
int missingBytes = HEXBYTES_COLUMN_BYTE_LENGTH - instrLen;
|
||||
for (int i = 0; i < missingBytes; i++)
|
||||
Console.Write(" ");
|
||||
Console.Write(" ");
|
||||
Console.WriteLine(output.ToStringAndReset());
|
||||
}
|
||||
// Simple and inefficient code writer that stores the data in a List<byte>, with a ToArray() method
|
||||
// to get the data
|
||||
sealed class CodeWriterImpl : CodeWriter {
|
||||
readonly List<byte> allBytes = new List<byte>();
|
||||
public override void WriteByte(byte value) => allBytes.Add(value);
|
||||
public byte[] ToArray() => allBytes.ToArray();
|
||||
}
|
||||
|
||||
const int HEXBYTES_COLUMN_BYTE_LENGTH = 10;
|
||||
const int exampleCodeBitness = 64;
|
||||
const ulong exampleCodeRIP = 0x00007FFAC46ACDA4;
|
||||
static readonly byte[] exampleCode = new byte[] {
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D,
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05,
|
||||
0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B,
|
||||
0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
## Assemble instructions
|
||||
|
||||
```C#
|
||||
using System;
|
||||
using System.IO;
|
||||
using Iced.Intel;
|
||||
using static Iced.Intel.AssemblerRegisters;
|
||||
|
||||
static class HowTo_Assemble {
|
||||
/*
|
||||
* This method produces the following output:
|
||||
10000000 = push r15
|
||||
10000002 = add rax,r15
|
||||
10000005 = mov rax,[rax]
|
||||
10000008 = mov rax,[rax]
|
||||
1000000B = cmp dword ptr [rax+rcx*8+10h],0FFFFFFFFh
|
||||
10000010 = jne short 0000000010000031h
|
||||
10000012 = inc rax
|
||||
10000015 = lea rcx,[10000031h]
|
||||
1000001C = rep stosd
|
||||
1000001E = xacquire lock add qword ptr [rax+rcx],7Bh
|
||||
10000025 = vaddpd zmm1{k3}{z},zmm2,zmm3 {rz-sae}
|
||||
1000002B = vunpcklps xmm2{k5}{z},xmm6,dword bcst [rax]
|
||||
10000031 = pop r15
|
||||
10000033 = ret
|
||||
*/
|
||||
public static MemoryStream Example() {
|
||||
// The assembler supports all modes: 16-bit, 32-bit and 64-bit.
|
||||
var c = Assembler.Create(64);
|
||||
|
||||
var label1 = c.CreateLabel();
|
||||
|
||||
c.push(r15);
|
||||
c.add(rax, r15);
|
||||
|
||||
// If the memory operand can only have one size, __[] can be used. The assembler ignores
|
||||
// the memory size unless it's an ambiguous instruction, eg. 'add [mem],123'
|
||||
c.mov(rax, __[rax]);
|
||||
c.mov(rax, __qword_ptr[rax]);
|
||||
|
||||
// The assembler must know the memory size to pick the correct instruction
|
||||
c.cmp(__dword_ptr[rax + rcx * 8 + 0x10], -1);
|
||||
c.jne(label1); // Jump to Label1
|
||||
|
||||
c.inc(rax);
|
||||
|
||||
// Labels can be referenced by memory operands (64-bit only) and call/jmp/jcc/loopcc instructions
|
||||
c.lea(rcx, __[label1]);
|
||||
|
||||
// The assembler has prefix properties that will be added to the following instruction
|
||||
c.rep.stosd();
|
||||
c.xacquire.@lock.add(__qword_ptr[rax + rcx], 123);
|
||||
|
||||
// The assembler defaults to VEX instructions. If you need EVEX instructions, set PreferVex=false
|
||||
c.PreferVex = false;
|
||||
// AVX-512 decorators are properties on the memory and register operands
|
||||
c.vaddpd(zmm1.k3.z, zmm2, zmm3.rz_sae);
|
||||
// To broadcast memory, use the __dword_bcst/__qword_bcst memory types
|
||||
c.vunpcklps(xmm2.k5.z, xmm6, __dword_bcst[rax]);
|
||||
|
||||
// Emit label1:
|
||||
c.Label(ref label1);
|
||||
c.pop(r15);
|
||||
c.ret();
|
||||
|
||||
const ulong RIP = 0x1000_0000;
|
||||
var stream = new MemoryStream();
|
||||
c.Assemble(new StreamCodeWriter(stream), RIP);
|
||||
|
||||
// Disassemble the result
|
||||
stream.Position = 0;
|
||||
var reader = new StreamCodeReader(stream);
|
||||
var decoder = Decoder.Create(64, reader);
|
||||
decoder.IP = RIP;
|
||||
while (stream.Position < stream.Length) {
|
||||
decoder.Decode(out var instr);
|
||||
Console.WriteLine($"{instr.IP:X} = {instr}");
|
||||
}
|
||||
|
||||
/*
|
||||
* This method produces the following output:
|
||||
Disassembled code:
|
||||
00007FFAC48ACDA4 push rbp
|
||||
00007FFAC48ACDA5 push rdi
|
||||
00007FFAC48ACDA6 push rsi
|
||||
00007FFAC48ACDA7 sub rsp,50h
|
||||
00007FFAC48ACDAE vzeroupper
|
||||
00007FFAC48ACDB1 lea rbp,[rsp+60h]
|
||||
00007FFAC48ACDB6 mov rsi,rcx
|
||||
00007FFAC48ACDB9 lea rdi,[rbp-38h]
|
||||
00007FFAC48ACDBD mov ecx,0Ah
|
||||
00007FFAC48ACDC2 xor eax,eax
|
||||
00007FFAC48ACDC4 rep stosd
|
||||
00007FFAC48ACDC6 mov rcx,rsi
|
||||
00007FFAC48ACDC9 mov [rbp+10h],rcx
|
||||
00007FFAC48ACDCD mov [rbp+18h],rdx
|
||||
*/
|
||||
static void CreateInstructionsExample() {
|
||||
const int bitness = 64;
|
||||
return stream;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
var instructions = new InstructionList();
|
||||
// push rbp
|
||||
instructions.Add(Instruction.Create(Code.Push_r64, Register.RBP));
|
||||
// push rdi
|
||||
instructions.Add(Instruction.Create(Code.Push_r64, Register.RDI));
|
||||
// push rsi
|
||||
instructions.Add(Instruction.Create(Code.Push_r64, Register.RSI));
|
||||
// sub rsp,50h
|
||||
instructions.Add(Instruction.Create(Code.Sub_rm64_imm32, Register.RSP, 0x50));
|
||||
// vzeroupper
|
||||
instructions.Add(Instruction.Create(Code.VEX_Vzeroupper));
|
||||
// lea rbp,[rsp+60h]
|
||||
instructions.Add(Instruction.Create(Code.Lea_r64_m, Register.RBP, new MemoryOperand(Register.RSP, 0x60)));
|
||||
// mov rsi,rcx
|
||||
instructions.Add(Instruction.Create(Code.Mov_r64_rm64, Register.RSI, Register.RCX));
|
||||
// lea rdi,[rbp-38h]
|
||||
instructions.Add(Instruction.Create(Code.Lea_r64_m, Register.RDI, new MemoryOperand(Register.RBP, -0x38)));
|
||||
// mov ecx,0Ah
|
||||
instructions.Add(Instruction.Create(Code.Mov_r32_imm32, Register.ECX, 0x0A));
|
||||
// xor eax,eax
|
||||
instructions.Add(Instruction.Create(Code.Xor_r32_rm32, Register.EAX, Register.EAX));
|
||||
// rep stosd
|
||||
instructions.Add(Instruction.CreateStosd(bitness, RepPrefixKind.Repe));
|
||||
// mov rcx,rsi
|
||||
instructions.Add(Instruction.Create(Code.Mov_r64_rm64, Register.RCX, Register.RSI));
|
||||
// mov [rbp+10h],rcx
|
||||
instructions.Add(Instruction.Create(Code.Mov_rm64_r64, new MemoryOperand(Register.RBP, 0x10), Register.RCX));
|
||||
// mov [rbp+18h],rdx
|
||||
instructions.Add(Instruction.Create(Code.Mov_rm64_r64, new MemoryOperand(Register.RBP, 0x18), Register.RDX));
|
||||
## Disassemble with a symbol resolver
|
||||
|
||||
var codeWriter = new CodeWriterImpl();
|
||||
ulong relocatedBaseAddress = exampleCodeRIP + 0x200000;
|
||||
var block = new InstructionBlock(codeWriter, instructions, relocatedBaseAddress);
|
||||
bool success = BlockEncoder.TryEncode(bitness, block, out var errorMessage, out _);
|
||||
if (!success) {
|
||||
Console.WriteLine($"ERROR: {errorMessage}");
|
||||
return;
|
||||
}
|
||||
```C#
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using Iced.Intel;
|
||||
|
||||
var newCode = codeWriter.ToArray();
|
||||
Console.WriteLine("Disassembled code:");
|
||||
var formatter = new NasmFormatter();
|
||||
formatter.Options.DigitSeparator = "`";
|
||||
formatter.Options.FirstOperandCharIndex = 10;
|
||||
var output = new StringOutput();
|
||||
var newDecoder = Decoder.Create(bitness, new ByteArrayCodeReader(newCode));
|
||||
newDecoder.IP = block.RIP;
|
||||
ulong endRip = newDecoder.IP + (uint)newCode.Length;
|
||||
while (newDecoder.IP < endRip) {
|
||||
newDecoder.Decode(out var instr);
|
||||
formatter.Format(instr, output);
|
||||
Console.WriteLine($"{instr.IP:X16} {output.ToStringAndReset()}");
|
||||
}
|
||||
static class HowTo_SymbolResolver {
|
||||
sealed class SymbolResolver : ISymbolResolver {
|
||||
readonly Dictionary<ulong, string> symbolDict;
|
||||
|
||||
public SymbolResolver(Dictionary<ulong, string> symbolDict) {
|
||||
this.symbolDict = symbolDict;
|
||||
}
|
||||
|
||||
/*
|
||||
* This method produces the following output:
|
||||
public bool TryGetSymbol(in Instruction instruction, int operand, int instructionOperand,
|
||||
ulong address, int addressSize, out SymbolResult symbol) {
|
||||
if (symbolDict.TryGetValue(address, out var symbolText)) {
|
||||
// The 'address' arg is the address of the symbol and doesn't have to be identical
|
||||
// to the 'address' arg passed to TryGetSymbol(). If it's different from the input
|
||||
// address, the formatter will add +N or -N, eg. '[rax+symbol+123]'
|
||||
symbol = new SymbolResult(address, symbolText);
|
||||
return true;
|
||||
}
|
||||
symbol = default;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
public static void Example() {
|
||||
var symbols = new Dictionary<ulong, string> {
|
||||
{ 0x5AA55AA5UL, "my_data" },
|
||||
};
|
||||
var symbolResolver = new SymbolResolver(symbols);
|
||||
var decoder = Decoder.Create(64, new ByteArrayCodeReader("488B8AA55AA55A"));
|
||||
decoder.Decode(out var instr);
|
||||
|
||||
var formatter = new GasFormatter(null, symbolResolver);
|
||||
var output = new StringOutput();
|
||||
formatter.Format(instr, output);
|
||||
// Prints: mov my_data(%rdx),%rcx
|
||||
Console.WriteLine(output.ToStringAndReset());
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Disassemble with colorized text
|
||||
|
||||
```C#
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using Iced.Intel;
|
||||
|
||||
static class HowTo_ColorizedText {
|
||||
public static void Example() {
|
||||
var codeReader = new ByteArrayCodeReader(exampleCode);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
|
||||
var formatter = new MasmFormatter();
|
||||
var output = new FormatterOutputImpl();
|
||||
while (codeReader.CanReadByte) {
|
||||
decoder.Decode(out var instr);
|
||||
output.List.Clear();
|
||||
formatter.Format(instr, output);
|
||||
foreach (var (text, kind) in output.List) {
|
||||
Console.ForegroundColor = GetColor(kind);
|
||||
Console.Write(text);
|
||||
}
|
||||
Console.WriteLine();
|
||||
}
|
||||
Console.ResetColor();
|
||||
}
|
||||
|
||||
sealed class FormatterOutputImpl : FormatterOutput {
|
||||
public List<(string text, FormatterTextKind kind)> List =
|
||||
new List<(string text, FormatterTextKind kind)>();
|
||||
public override void Write(string text, FormatterTextKind kind) => List.Add((text, kind));
|
||||
}
|
||||
|
||||
static ConsoleColor GetColor(FormatterTextKind kind) {
|
||||
switch (kind) {
|
||||
case FormatterTextKind.Directive:
|
||||
case FormatterTextKind.Keyword:
|
||||
return ConsoleColor.Yellow;
|
||||
|
||||
case FormatterTextKind.Prefix:
|
||||
case FormatterTextKind.Mnemonic:
|
||||
return ConsoleColor.Red;
|
||||
|
||||
case FormatterTextKind.Register:
|
||||
return ConsoleColor.Magenta;
|
||||
|
||||
case FormatterTextKind.Number:
|
||||
return ConsoleColor.Green;
|
||||
|
||||
default:
|
||||
return ConsoleColor.White;
|
||||
}
|
||||
}
|
||||
|
||||
const int exampleCodeBitness = 64;
|
||||
const ulong exampleCodeRIP = 0x00007FFAC46ACDA4;
|
||||
static readonly byte[] exampleCode = new byte[] {
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D,
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05,
|
||||
0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B,
|
||||
0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
## Move code in memory (eg. hook a function)
|
||||
|
||||
```C#
|
||||
using System;
|
||||
using System.Collections.Generic;
|
||||
using Iced.Intel;
|
||||
|
||||
static class HowTo_MoveCode {
|
||||
// Decodes instructions from some address, then encodes them starting at some
|
||||
// other address. This can be used to hook a function. You decode enough instructions
|
||||
// until you have enough bytes to add a JMP instruction that jumps to your code.
|
||||
// Your code will then conditionally jump to the original code that you re-encoded.
|
||||
//
|
||||
// This code uses the BlockEncoder which will help with some things, eg. converting
|
||||
// short branches to longer branches if the target is too far away.
|
||||
//
|
||||
// 64-bit mode also supports RIP relative addressing, but the encoder can't rewrite
|
||||
// those to use a longer displacement. If any of the moved instructions have RIP
|
||||
// relative addressing and it tries to access data too far away, the encoder will fail.
|
||||
// The easiest solution is to use OS alloc functions that allocate memory close to the
|
||||
// original code (+/-2GB).
|
||||
public static void Example() {
|
||||
var codeReader = new ByteArrayCodeReader(exampleCode);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
|
||||
var instructions = new InstructionList();
|
||||
while (codeReader.CanReadByte)
|
||||
decoder.Decode(out instructions.AllocUninitializedElement());
|
||||
|
||||
// Relocate the code to some new location. It can fix short/near branches and
|
||||
// convert them to short/near/long forms if needed. This also works even if it's a
|
||||
// jrcxz/loop/loopcc instruction which only has a short form.
|
||||
//
|
||||
// It can currently only fix RIP relative operands if the new location is within 2GB
|
||||
// of the target data location.
|
||||
//
|
||||
// Note that a block is not the same thing as a basic block. A block can contain any
|
||||
// number of instructions, including any number of branch instructions. One block
|
||||
// should be enough unless you must relocate different blocks to different locations.
|
||||
var codeWriter = new CodeWriterImpl();
|
||||
ulong relocatedBaseAddress = exampleCodeRIP + 0x200000;
|
||||
var block = new InstructionBlock(codeWriter, instructions, relocatedBaseAddress);
|
||||
// This method can also encode more than one block but that's rarely needed, see above comment.
|
||||
bool success = BlockEncoder.TryEncode(decoder.Bitness, block, out var errorMessage, out _);
|
||||
if (!success) {
|
||||
Console.WriteLine($"ERROR: {errorMessage}");
|
||||
return;
|
||||
}
|
||||
var newCode = codeWriter.ToArray();
|
||||
Console.WriteLine("New code bytes:");
|
||||
for (int i = 0; i < newCode.Length;) {
|
||||
for (int j = 0; j < 16 && i < newCode.Length; i++, j++) {
|
||||
if (j != 0)
|
||||
Console.Write(", ");
|
||||
Console.Write("0x");
|
||||
Console.Write(newCode[i].ToString("X2"));
|
||||
}
|
||||
Console.WriteLine();
|
||||
}
|
||||
|
||||
// Disassemble the new relocated code. It's identical to the original code except that
|
||||
// the RIP relative instructions have been updated.
|
||||
Console.WriteLine("Disassembled code:");
|
||||
var formatter = new NasmFormatter();
|
||||
var output = new StringOutput();
|
||||
var newReader = new ByteArrayCodeReader(newCode);
|
||||
var newDecoder = Decoder.Create(decoder.Bitness, newReader);
|
||||
newDecoder.IP = block.RIP;
|
||||
while (newReader.CanReadByte) {
|
||||
newDecoder.Decode(out var instr);
|
||||
formatter.Format(instr, output);
|
||||
Console.WriteLine($"{instr.IP:X16} {output.ToStringAndReset()}");
|
||||
}
|
||||
}
|
||||
sealed class CodeWriterImpl : CodeWriter {
|
||||
readonly List<byte> allBytes = new List<byte>();
|
||||
public override void WriteByte(byte value) => allBytes.Add(value);
|
||||
public byte[] ToArray() => allBytes.ToArray();
|
||||
}
|
||||
|
||||
const int exampleCodeBitness = 64;
|
||||
const ulong exampleCodeRIP = 0x00007FFAC46ACDA4;
|
||||
static readonly byte[] exampleCode = new byte[] {
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D,
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05,
|
||||
0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B,
|
||||
0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
## Get instruction info, eg. read/written regs/mem, control flow info, etc
|
||||
|
||||
```C#
|
||||
using System;
|
||||
using Iced.Intel;
|
||||
|
||||
static class HowTo_InstructionInfo {
|
||||
/*
|
||||
* This method produces the following output:
|
||||
00007FFAC46ACDA4 mov [rsp+10h],rbx
|
||||
OpCode: REX.W 89 /r
|
||||
Instruction: MOV r/m64, r64
|
||||
|
@ -537,159 +663,88 @@ Disassembled code:
|
|||
Op0: r32_reg
|
||||
Op1: r32_or_mem
|
||||
RDI:Write
|
||||
*/
|
||||
static void InstructionInfoExample() {
|
||||
var codeReader = new ByteArrayCodeReader(exampleCode);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
ulong endRip = decoder.IP + (uint)exampleCode.Length;
|
||||
*/
|
||||
public static void Example() {
|
||||
var codeReader = new ByteArrayCodeReader(exampleCode);
|
||||
var decoder = Decoder.Create(exampleCodeBitness, codeReader);
|
||||
decoder.IP = exampleCodeRIP;
|
||||
|
||||
// Use a factory to create the instruction info if you need register and
|
||||
// memory usage. If it's something else, eg. encoding, flags, etc, there
|
||||
// are properties on Instruction that can be used instead.
|
||||
var instrInfoFactory = new InstructionInfoFactory();
|
||||
while (decoder.IP < endRip) {
|
||||
decoder.Decode(out var instr);
|
||||
// Use a factory to create the instruction info if you need register and
|
||||
// memory usage. If it's something else, eg. encoding, flags, etc, there
|
||||
// are properties on Instruction that can be used instead.
|
||||
var instrInfoFactory = new InstructionInfoFactory();
|
||||
while (codeReader.CanReadByte) {
|
||||
decoder.Decode(out var instr);
|
||||
|
||||
// Gets offsets in the instruction of the displacement and immediates and their sizes.
|
||||
// This can be useful if there are relocations in the binary. The encoder has a similar
|
||||
// method. This method must be called after Decode() and you must pass in the last
|
||||
// instruction Decode() returned.
|
||||
var offsets = decoder.GetConstantOffsets(instr);
|
||||
// Gets offsets in the instruction of the displacement and immediates and their sizes.
|
||||
// This can be useful if there are relocations in the binary. The encoder has a similar
|
||||
// method. This method must be called after Decode() and you must pass in the last
|
||||
// instruction Decode() returned.
|
||||
var offsets = decoder.GetConstantOffsets(instr);
|
||||
|
||||
// A formatter is recommended since this ToString() method defaults to masm syntax,
|
||||
// uses default options, and allocates every single time it's called.
|
||||
var disasmStr = instr.ToString();
|
||||
Console.WriteLine($"{instr.IP:X16} {disasmStr}");
|
||||
Console.WriteLine($"{instr.IP:X16} {instr}");
|
||||
|
||||
var opCode = instr.OpCode;
|
||||
var info = instrInfoFactory.GetInfo(instr);
|
||||
const string tab = " ";
|
||||
Console.WriteLine($"{tab}OpCode: {opCode.ToOpCodeString()}");
|
||||
Console.WriteLine($"{tab}Instruction: {opCode.ToInstructionString()}");
|
||||
Console.WriteLine($"{tab}Encoding: {instr.Encoding}");
|
||||
Console.WriteLine($"{tab}Mnemonic: {instr.Mnemonic}");
|
||||
Console.WriteLine($"{tab}Code: {instr.Code}");
|
||||
Console.WriteLine($"{tab}CpuidFeature: {string.Join(" and ", instr.CpuidFeatures)}");
|
||||
Console.WriteLine($"{tab}FlowControl: {instr.FlowControl}");
|
||||
if (offsets.HasDisplacement)
|
||||
Console.WriteLine($"{tab}Displacement offset = {offsets.DisplacementOffset}, size = {offsets.DisplacementSize}");
|
||||
if (offsets.HasImmediate)
|
||||
Console.WriteLine($"{tab}Immediate offset = {offsets.ImmediateOffset}, size = {offsets.ImmediateSize}");
|
||||
if (offsets.HasImmediate2)
|
||||
Console.WriteLine($"{tab}Immediate #2 offset = {offsets.ImmediateOffset2}, size = {offsets.ImmediateSize2}");
|
||||
if (instr.IsStackInstruction)
|
||||
Console.WriteLine($"{tab}SP Increment: {instr.StackPointerIncrement}");
|
||||
if (instr.ConditionCode != ConditionCode.None)
|
||||
Console.WriteLine($"{tab}Condition code: {instr.ConditionCode}");
|
||||
if (instr.RflagsRead != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Read: {instr.RflagsRead}");
|
||||
if (instr.RflagsWritten != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Written: {instr.RflagsWritten}");
|
||||
if (instr.RflagsCleared != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Cleared: {instr.RflagsCleared}");
|
||||
if (instr.RflagsSet != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Set: {instr.RflagsSet}");
|
||||
if (instr.RflagsUndefined != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Undefined: {instr.RflagsUndefined}");
|
||||
if (instr.RflagsModified != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Modified: {instr.RflagsModified}");
|
||||
for (int i = 0; i < instr.OpCount; i++) {
|
||||
var opKind = instr.GetOpKind(i);
|
||||
if (opKind == OpKind.Memory || opKind == OpKind.Memory64) {
|
||||
int size = instr.MemorySize.GetSize();
|
||||
if (size != 0)
|
||||
Console.WriteLine($"{tab}Memory size: {size}");
|
||||
break;
|
||||
}
|
||||
var opCode = instr.OpCode;
|
||||
var info = instrInfoFactory.GetInfo(instr);
|
||||
const string tab = " ";
|
||||
Console.WriteLine($"{tab}OpCode: {opCode.ToOpCodeString()}");
|
||||
Console.WriteLine($"{tab}Instruction: {opCode.ToInstructionString()}");
|
||||
Console.WriteLine($"{tab}Encoding: {instr.Encoding}");
|
||||
Console.WriteLine($"{tab}Mnemonic: {instr.Mnemonic}");
|
||||
Console.WriteLine($"{tab}Code: {instr.Code}");
|
||||
Console.WriteLine($"{tab}CpuidFeature: {string.Join(" and ", instr.CpuidFeatures)}");
|
||||
Console.WriteLine($"{tab}FlowControl: {instr.FlowControl}");
|
||||
if (offsets.HasDisplacement)
|
||||
Console.WriteLine($"{tab}Displacement offset = {offsets.DisplacementOffset}, size = {offsets.DisplacementSize}");
|
||||
if (offsets.HasImmediate)
|
||||
Console.WriteLine($"{tab}Immediate offset = {offsets.ImmediateOffset}, size = {offsets.ImmediateSize}");
|
||||
if (offsets.HasImmediate2)
|
||||
Console.WriteLine($"{tab}Immediate #2 offset = {offsets.ImmediateOffset2}, size = {offsets.ImmediateSize2}");
|
||||
if (instr.IsStackInstruction)
|
||||
Console.WriteLine($"{tab}SP Increment: {instr.StackPointerIncrement}");
|
||||
if (instr.ConditionCode != ConditionCode.None)
|
||||
Console.WriteLine($"{tab}Condition code: {instr.ConditionCode}");
|
||||
if (instr.RflagsRead != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Read: {instr.RflagsRead}");
|
||||
if (instr.RflagsWritten != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Written: {instr.RflagsWritten}");
|
||||
if (instr.RflagsCleared != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Cleared: {instr.RflagsCleared}");
|
||||
if (instr.RflagsSet != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Set: {instr.RflagsSet}");
|
||||
if (instr.RflagsUndefined != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Undefined: {instr.RflagsUndefined}");
|
||||
if (instr.RflagsModified != RflagsBits.None)
|
||||
Console.WriteLine($"{tab}RFLAGS Modified: {instr.RflagsModified}");
|
||||
for (int i = 0; i < instr.OpCount; i++) {
|
||||
var opKind = instr.GetOpKind(i);
|
||||
if (opKind == OpKind.Memory || opKind == OpKind.Memory64) {
|
||||
int size = instr.MemorySize.GetSize();
|
||||
if (size != 0)
|
||||
Console.WriteLine($"{tab}Memory size: {size}");
|
||||
break;
|
||||
}
|
||||
for (int i = 0; i < instr.OpCount; i++)
|
||||
Console.WriteLine($"{tab}Op{i}Access: {info.GetOpAccess(i)}");
|
||||
for (int i = 0; i < opCode.OpCount; i++)
|
||||
Console.WriteLine($"{tab}Op{i}: {opCode.GetOpKind(i)}");
|
||||
// The returned iterator is a struct, nothing is allocated unless you box it
|
||||
foreach (var regInfo in info.GetUsedRegisters())
|
||||
Console.WriteLine($"{tab}{regInfo.ToString()}");
|
||||
foreach (var memInfo in info.GetUsedMemory())
|
||||
Console.WriteLine($"{tab}{memInfo.ToString()}");
|
||||
}
|
||||
for (int i = 0; i < instr.OpCount; i++)
|
||||
Console.WriteLine($"{tab}Op{i}Access: {info.GetOpAccess(i)}");
|
||||
for (int i = 0; i < opCode.OpCount; i++)
|
||||
Console.WriteLine($"{tab}Op{i}: {opCode.GetOpKind(i)}");
|
||||
// The returned iterator is a struct, nothing is allocated unless you box it
|
||||
foreach (var regInfo in info.GetUsedRegisters())
|
||||
Console.WriteLine($"{tab}{regInfo.ToString()}");
|
||||
foreach (var memInfo in info.GetUsedMemory())
|
||||
Console.WriteLine($"{tab}{memInfo.ToString()}");
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Assembler
|
||||
|
||||
Iced provide a high level assembler by providing a friendly syntax close to what a regular assembler could provide:
|
||||
|
||||
```c#
|
||||
using Iced.Intel;
|
||||
// The following using static allows to import assembler registers
|
||||
// e.g `eax` directly accessible as variables
|
||||
using static Iced.Intel.AssemblerRegisters;
|
||||
|
||||
public static class AssemblerPlay
|
||||
{
|
||||
public static MemoryStream GenerateCode()
|
||||
{
|
||||
var c = Assembler.Create(64);
|
||||
|
||||
c.push(r15);
|
||||
c.mov(r15, rsi);
|
||||
c.mov(rax, __[rdi]);
|
||||
c.add(rax, r15);
|
||||
c.pop(r15);
|
||||
c.ret();
|
||||
|
||||
var stream = new MemoryStream();
|
||||
var writer = new StreamCodeWriter(stream)
|
||||
c.Encode(writer);
|
||||
|
||||
return stream;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The assembler supports the entire instruction set available through the `Encoder` class.
|
||||
|
||||
- For prefixes (e.g `rep`, `xacquire`) they are directly accessible on the `Assembler`. For example: `c.rep.movsd()`.
|
||||
- AVX512+ k1z/sae/rounding flags can be set directly on registers: `c.vaddpd(zmm1.k3.z, zmm2, zmm3.rz_sae)`
|
||||
- AVX512+ broadcasting can be specified via e.g `__dword_bcst`: `c.vunpcklps(xmm2.k5.z, xmm6, __dword_bcst[rax])`
|
||||
|
||||
Labels can be created via `Assembler.CreateLabel`, placed just before an instruction via `Assembler.Label` and referenced by branch instructions:
|
||||
|
||||
```c#
|
||||
using Iced.Intel;
|
||||
// The following using static allows to import assembler registers
|
||||
// e.g `eax` directly accessible as variables
|
||||
using static Iced.Intel.AssemblerRegisters;
|
||||
|
||||
public static class AssemblerPlay
|
||||
{
|
||||
public static MemoryStream GenerateCode()
|
||||
{
|
||||
var c = Assembler.Create(64);
|
||||
|
||||
// Create a label
|
||||
var label1 = c.CreateLabel();
|
||||
|
||||
c.push(r15);
|
||||
c.add(rax, r15);
|
||||
c.jne(label1); // Jump to Label1
|
||||
|
||||
c.inc(rax);
|
||||
|
||||
// Emit label1:
|
||||
c.Label(ref label1);
|
||||
c.pop(r15);
|
||||
c.ret();
|
||||
|
||||
var stream = new MemoryStream();
|
||||
var writer = new StreamCodeWriter(stream)
|
||||
c.Encode(writer);
|
||||
|
||||
return stream;
|
||||
}
|
||||
const int exampleCodeBitness = 64;
|
||||
const ulong exampleCodeRIP = 0x00007FFAC46ACDA4;
|
||||
static readonly byte[] exampleCode = new byte[] {
|
||||
0x48, 0x89, 0x5C, 0x24, 0x10, 0x48, 0x89, 0x74, 0x24, 0x18, 0x55, 0x57, 0x41, 0x56, 0x48, 0x8D,
|
||||
0xAC, 0x24, 0x00, 0xFF, 0xFF, 0xFF, 0x48, 0x81, 0xEC, 0x00, 0x02, 0x00, 0x00, 0x48, 0x8B, 0x05,
|
||||
0x18, 0x57, 0x0A, 0x00, 0x48, 0x33, 0xC4, 0x48, 0x89, 0x85, 0xF0, 0x00, 0x00, 0x00, 0x4C, 0x8B,
|
||||
0x05, 0x2F, 0x24, 0x0A, 0x00, 0x48, 0x8D, 0x05, 0x78, 0x7C, 0x04, 0x00, 0x33, 0xFF
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
|
|
|
@ -25,13 +25,17 @@ High performance x86 (16/32/64-bit) instruction decoder, disassembler and assemb
|
|||
It can be used for static analysis of x86/x64 binaries, to rewrite code (eg. remove garbage instructions), to relocate code or as a disassembler.
|
||||
|
||||
- Supports all Intel and AMD instructions
|
||||
- The decoder doesn't allocate any memory and is 2x-5x+ faster than other similar libraries written in C or C#
|
||||
- Small decoded instructions, only 32 bytes
|
||||
- The formatter supports masm, nasm, gas (AT&T), Intel (XED) and there are many options to customize the output
|
||||
- The encoder can be used to re-encode decoded instructions at any address
|
||||
- The block encoder encodes a list of instructions and optimizes branches to short, near or 'long' (64-bit: 1 or more instructions)
|
||||
- High level Assembler providing a simple and lean syntax (e.g `asm.mov(eax, edx)`))
|
||||
- Decoding and disassembler support:
|
||||
- The decoder doesn't allocate any memory and is 2x-5x+ faster than other similar libraries written in C or C#
|
||||
- Small decoded instructions, only 32 bytes
|
||||
- The formatter supports masm, nasm, gas (AT&T), Intel (XED) and there are many options to customize the output
|
||||
- Encoding support:
|
||||
- The encoder can be used to re-encode decoded instructions at any address
|
||||
- The block encoder encodes a list of instructions and optimizes branches to short, near or 'long' (64-bit: 1 or more instructions)
|
||||
- API to get instruction info, eg. read/written registers, memory and rflags bits; CPUID feature flag, flow control info, etc
|
||||
- All instructions are tested (decode, encode, format, instruction info)
|
||||
- Supports `.NET Standard 2.0/2.1+` and `.NET Framework 4.5+`
|
||||
|
||||
License: MIT
|
||||
</PackageDescription>
|
||||
|
|
Loading…
Reference in New Issue