373 lines
21 KiB
Python
373 lines
21 KiB
Python
#
|
|
# Copyright (c) 2018, Salesforce, Inc.
|
|
# The Board of Trustees of the Leland Stanford Junior University
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# * Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# * Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# * Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
from collections import defaultdict
|
|
|
|
from ..util import get_trainable_params, set_seed
|
|
|
|
from .common import *
|
|
|
|
class MultitaskQuestionAnsweringNetwork(nn.Module):
|
|
|
|
def __init__(self, field, args):
|
|
super().__init__()
|
|
self.field = field
|
|
self.args = args
|
|
self.pad_idx = self.field.vocab.stoi[self.field.pad_token]
|
|
self.device = set_seed(args)
|
|
|
|
def dp(args):
|
|
return args.dropout_ratio if args.rnn_layers > 1 else 0.
|
|
|
|
if self.args.glove_and_char:
|
|
|
|
self.encoder_embeddings = Embedding(field, args.dimension,
|
|
trained_dimension=0,
|
|
dropout=args.dropout_ratio,
|
|
project=True,
|
|
requires_grad=args.retrain_encoder_embedding)
|
|
|
|
if args.pretrained_decoder_lm:
|
|
pretrained_save_dict = torch.load(os.path.join(args.embeddings, args.pretrained_decoder_lm), map_location=str(self.device))
|
|
|
|
self.pretrained_decoder_vocab_itos = pretrained_save_dict['vocab']
|
|
self.pretrained_decoder_vocab_stoi = defaultdict(lambda: 0, {
|
|
w: i for i, w in enumerate(self.pretrained_decoder_vocab_itos)
|
|
})
|
|
self.pretrained_decoder_embeddings = PretrainedDecoderLM(rnn_type=pretrained_save_dict['settings']['rnn_type'],
|
|
ntoken=len(self.pretrained_decoder_vocab_itos),
|
|
emsize=pretrained_save_dict['settings']['emsize'],
|
|
nhid=pretrained_save_dict['settings']['nhid'],
|
|
nlayers=pretrained_save_dict['settings']['nlayers'],
|
|
dropout=0.0)
|
|
self.pretrained_decoder_embeddings.load_state_dict(pretrained_save_dict['model'], strict=True)
|
|
pretrained_lm_params = get_trainable_params(self.pretrained_decoder_embeddings)
|
|
for p in pretrained_lm_params:
|
|
p.requires_grad = False
|
|
|
|
if self.pretrained_decoder_embeddings.nhid != args.dimension:
|
|
self.pretrained_decoder_embedding_projection = Feedforward(self.pretrained_decoder_embeddings.nhid,
|
|
args.dimension)
|
|
else:
|
|
self.pretrained_decoder_embedding_projection = None
|
|
self.decoder_embeddings = None
|
|
else:
|
|
self.pretrained_decoder_vocab_itos = None
|
|
self.pretrained_decoder_vocab_stoi = None
|
|
self.pretrained_decoder_embeddings = None
|
|
self.decoder_embeddings = Embedding(field, args.dimension,
|
|
include_pretrained=args.glove_decoder,
|
|
trained_dimension=args.trainable_decoder_embedding,
|
|
dropout=args.dropout_ratio, project=True)
|
|
|
|
self.bilstm_before_coattention = PackedLSTM(args.dimension, args.dimension,
|
|
batch_first=True, bidirectional=True, num_layers=1, dropout=0)
|
|
self.coattention = CoattentiveLayer(args.dimension, dropout=0.3)
|
|
dim = 2*args.dimension + args.dimension + args.dimension
|
|
|
|
self.context_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
|
|
batch_first=True, dropout=dp(args), bidirectional=True,
|
|
num_layers=args.rnn_layers)
|
|
self.self_attentive_encoder_context = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
|
|
self.bilstm_context = PackedLSTM(args.dimension, args.dimension,
|
|
batch_first=True, dropout=dp(args), bidirectional=True,
|
|
num_layers=args.rnn_layers)
|
|
|
|
self.question_bilstm_after_coattention = PackedLSTM(dim, args.dimension,
|
|
batch_first=True, dropout=dp(args), bidirectional=True,
|
|
num_layers=args.rnn_layers)
|
|
self.self_attentive_encoder_question = TransformerEncoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
|
|
self.bilstm_question = PackedLSTM(args.dimension, args.dimension,
|
|
batch_first=True, dropout=dp(args), bidirectional=True,
|
|
num_layers=args.rnn_layers)
|
|
|
|
self.self_attentive_decoder = TransformerDecoder(args.dimension, args.transformer_heads, args.transformer_hidden, args.transformer_layers, args.dropout_ratio)
|
|
self.dual_ptr_rnn_decoder = DualPtrRNNDecoder(args.dimension, args.dimension,
|
|
dropout=args.dropout_ratio, num_layers=args.rnn_layers)
|
|
|
|
self.generative_vocab_size = min(len(field.vocab), args.max_generative_vocab)
|
|
self.out = nn.Linear(args.dimension, self.generative_vocab_size)
|
|
|
|
self.dropout = nn.Dropout(0.4)
|
|
|
|
def set_embeddings(self, embeddings):
|
|
self.encoder_embeddings.set_embeddings(embeddings)
|
|
if self.decoder_embeddings is not None:
|
|
self.decoder_embeddings.set_embeddings(embeddings)
|
|
|
|
def forward(self, batch, iteration):
|
|
context, context_lengths, context_limited, context_tokens = batch.context, batch.context_lengths, batch.context_limited, batch.context_tokens
|
|
question, question_lengths, question_limited, question_tokens = batch.question, batch.question_lengths, batch.question_limited, batch.question_tokens
|
|
answer, answer_lengths, answer_limited, answer_tokens = batch.answer, batch.answer_lengths, batch.answer_limited, batch.answer_tokens
|
|
decoder_vocab = batch.decoder_vocab
|
|
|
|
self.map_to_full = decoder_vocab.decode
|
|
|
|
context_embedded = self.encoder_embeddings(context)
|
|
question_embedded = self.encoder_embeddings(question)
|
|
|
|
context_encoded = self.bilstm_before_coattention(context_embedded, context_lengths)[0]
|
|
question_encoded = self.bilstm_before_coattention(question_embedded, question_lengths)[0]
|
|
|
|
context_padding = context.data == self.pad_idx
|
|
question_padding = question.data == self.pad_idx
|
|
|
|
coattended_context, coattended_question = self.coattention(context_encoded, question_encoded, context_padding, question_padding)
|
|
|
|
context_summary = torch.cat([coattended_context, context_encoded, context_embedded], -1)
|
|
condensed_context, _ = self.context_bilstm_after_coattention(context_summary, context_lengths)
|
|
self_attended_context = self.self_attentive_encoder_context(condensed_context, padding=context_padding)
|
|
final_context, (context_rnn_h, context_rnn_c) = self.bilstm_context(self_attended_context[-1], context_lengths)
|
|
context_rnn_state = [self.reshape_rnn_state(x) for x in (context_rnn_h, context_rnn_c)]
|
|
|
|
question_summary = torch.cat([coattended_question, question_encoded, question_embedded], -1)
|
|
condensed_question, _ = self.question_bilstm_after_coattention(question_summary, question_lengths)
|
|
self_attended_question = self.self_attentive_encoder_question(condensed_question, padding=question_padding)
|
|
final_question, (question_rnn_h, question_rnn_c) = self.bilstm_question(self_attended_question[-1], question_lengths)
|
|
question_rnn_state = [self.reshape_rnn_state(x) for x in (question_rnn_h, question_rnn_c)]
|
|
|
|
context_indices = context_limited if context_limited is not None else context
|
|
question_indices = question_limited if question_limited is not None else question
|
|
answer_indices = answer_limited if answer_limited is not None else answer
|
|
|
|
pad_idx = self.field.decoder_stoi[self.field.pad_token]
|
|
context_padding = context_indices.data == pad_idx
|
|
question_padding = question_indices.data == pad_idx
|
|
|
|
self.dual_ptr_rnn_decoder.applyMasks(context_padding, question_padding)
|
|
|
|
if self.training:
|
|
answer_padding = (answer_indices.data == pad_idx)[:, :-1]
|
|
|
|
if self.args.pretrained_decoder_lm:
|
|
# note that pretrained_decoder_embeddings is time first
|
|
answer_pretrained_numerical = [
|
|
[self.pretrained_decoder_vocab_stoi[sentence[time]] for sentence in answer_tokens] for time in range(len(answer_tokens[0]))
|
|
]
|
|
answer_pretrained_numerical = torch.tensor(answer_pretrained_numerical, dtype=torch.long, device=self.device)
|
|
|
|
with torch.no_grad():
|
|
answer_embedded, _ = self.pretrained_decoder_embeddings.encode(answer_pretrained_numerical)
|
|
answer_embedded.transpose_(0, 1)
|
|
|
|
if self.pretrained_decoder_embedding_projection is not None:
|
|
answer_embedded = self.pretrained_decoder_embedding_projection(answer_embedded)
|
|
else:
|
|
answer_embedded = self.decoder_embeddings(answer)
|
|
self_attended_decoded = self.self_attentive_decoder(answer_embedded[:, :-1].contiguous(), self_attended_context, context_padding=context_padding, answer_padding=answer_padding, positional_encodings=True)
|
|
decoder_outputs = self.dual_ptr_rnn_decoder(self_attended_decoded,
|
|
final_context, final_question, hidden=context_rnn_state)
|
|
rnn_output, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switch, context_question_switch, rnn_state = decoder_outputs
|
|
|
|
probs = self.probs(self.out, rnn_output, vocab_pointer_switch, context_question_switch,
|
|
context_attention, question_attention,
|
|
context_indices, question_indices,
|
|
decoder_vocab)
|
|
|
|
|
|
if self.args.use_maxmargin_loss:
|
|
targets = answer_indices[:, 1:].contiguous()
|
|
loss = max_margin_loss(probs, targets, pad_idx=pad_idx)
|
|
|
|
else:
|
|
probs, targets = mask(answer_indices[:, 1:].contiguous(), probs.contiguous(), pad_idx=pad_idx)
|
|
loss = F.nll_loss(probs.log(), targets)
|
|
return loss, None
|
|
|
|
else:
|
|
return None, self.greedy(self_attended_context, final_context, final_question,
|
|
context_indices, question_indices,
|
|
decoder_vocab, rnn_state=context_rnn_state).data
|
|
|
|
def reshape_rnn_state(self, h):
|
|
return h.view(h.size(0) // 2, 2, h.size(1), h.size(2)) \
|
|
.transpose(1, 2).contiguous() \
|
|
.view(h.size(0) // 2, h.size(1), h.size(2) * 2).contiguous()
|
|
|
|
def probs(self, generator, outputs, vocab_pointer_switches, context_question_switches,
|
|
context_attention, question_attention,
|
|
context_indices, question_indices,
|
|
decoder_vocab):
|
|
|
|
size = list(outputs.size())
|
|
|
|
size[-1] = self.generative_vocab_size
|
|
scores = generator(outputs.view(-1, outputs.size(-1))).view(size)
|
|
p_vocab = F.softmax(scores, dim=scores.dim()-1)
|
|
scaled_p_vocab = vocab_pointer_switches.expand_as(p_vocab) * p_vocab
|
|
|
|
effective_vocab_size = len(decoder_vocab)
|
|
if self.generative_vocab_size < effective_vocab_size:
|
|
size[-1] = effective_vocab_size - self.generative_vocab_size
|
|
buff = scaled_p_vocab.new_full(size, EPSILON)
|
|
scaled_p_vocab = torch.cat([scaled_p_vocab, buff], dim=buff.dim()-1)
|
|
|
|
# p_context_ptr
|
|
scaled_p_vocab.scatter_add_(scaled_p_vocab.dim()-1, context_indices.unsqueeze(1).expand_as(context_attention),
|
|
(context_question_switches * (1 - vocab_pointer_switches)).expand_as(context_attention) * context_attention)
|
|
|
|
# p_question_ptr
|
|
scaled_p_vocab.scatter_add_(scaled_p_vocab.dim()-1, question_indices.unsqueeze(1).expand_as(question_attention),
|
|
((1 - context_question_switches) * (1 - vocab_pointer_switches)).expand_as(question_attention) * question_attention)
|
|
|
|
return scaled_p_vocab
|
|
|
|
|
|
def greedy(self, self_attended_context, context, question, context_indices, question_indices, decoder_vocab, rnn_state=None):
|
|
B, TC, C = context.size()
|
|
T = self.args.max_output_length
|
|
outs = context.new_full((B, T), self.field.decoder_stoi['<pad>'], dtype=torch.long)
|
|
hiddens = [self_attended_context[0].new_zeros((B, T, C))
|
|
for l in range(len(self.self_attentive_decoder.layers) + 1)]
|
|
hiddens[0] = hiddens[0] + positional_encodings_like(hiddens[0])
|
|
eos_yet = context.new_zeros((B, )).byte()
|
|
|
|
pretrained_lm_hidden = None
|
|
if self.args.pretrained_decoder_lm:
|
|
pretrained_lm_hidden = self.pretrained_decoder_embeddings.init_hidden(B)
|
|
rnn_output, context_alignment, question_alignment = None, None, None
|
|
for t in range(T):
|
|
if t == 0:
|
|
if self.args.pretrained_decoder_lm:
|
|
init_token = self_attended_context[-1].new_full((1, B), self.pretrained_decoder_vocab_stoi['<init>'], dtype=torch.long)
|
|
|
|
# note that pretrained_decoder_embeddings is time first
|
|
embedding, pretrained_lm_hidden = self.pretrained_decoder_embeddings.encode(init_token, pretrained_lm_hidden)
|
|
embedding.transpose_(0, 1)
|
|
|
|
if self.pretrained_decoder_embedding_projection is not None:
|
|
embedding = self.pretrained_decoder_embedding_projection(embedding)
|
|
else:
|
|
init_token = self_attended_context[-1].new_full((B, 1), self.field.vocab.stoi['<init>'], dtype=torch.long)
|
|
embedding = self.decoder_embeddings(init_token, [1]*B)
|
|
else:
|
|
if self.args.pretrained_decoder_lm:
|
|
current_token = [self.field.vocab.itos[x] for x in outs[:, t - 1]]
|
|
current_token_id = torch.tensor([[self.pretrained_decoder_vocab_stoi[x] for x in current_token]],
|
|
dtype=torch.long, device=self.device, requires_grad=False)
|
|
embedding, pretrained_lm_hidden = self.pretrained_decoder_embeddings.encode(current_token_id,
|
|
pretrained_lm_hidden)
|
|
|
|
# note that pretrained_decoder_embeddings is time first
|
|
embedding.transpose_(0, 1)
|
|
|
|
if self.pretrained_decoder_embedding_projection is not None:
|
|
embedding = self.pretrained_decoder_embedding_projection(embedding)
|
|
else:
|
|
current_token_id = outs[:, t - 1].unsqueeze(1)
|
|
embedding = self.decoder_embeddings(current_token_id, [1]*B)
|
|
|
|
hiddens[0][:, t] = hiddens[0][:, t] + (math.sqrt(self.self_attentive_decoder.d_model) * embedding).squeeze(1)
|
|
for l in range(len(self.self_attentive_decoder.layers)):
|
|
hiddens[l + 1][:, t] = self.self_attentive_decoder.layers[l].feedforward(
|
|
self.self_attentive_decoder.layers[l].attention(
|
|
self.self_attentive_decoder.layers[l].selfattn(hiddens[l][:, t], hiddens[l][:, :t + 1], hiddens[l][:, :t + 1])
|
|
, self_attended_context[l], self_attended_context[l]))
|
|
decoder_outputs = self.dual_ptr_rnn_decoder(hiddens[-1][:, t].unsqueeze(1),
|
|
context, question,
|
|
context_alignment=context_alignment, question_alignment=question_alignment,
|
|
hidden=rnn_state, output=rnn_output)
|
|
rnn_output, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switch, context_question_switch, rnn_state = decoder_outputs
|
|
probs = self.probs(self.out, rnn_output, vocab_pointer_switch, context_question_switch,
|
|
context_attention, question_attention,
|
|
context_indices, question_indices,
|
|
decoder_vocab)
|
|
pred_probs, preds = probs.max(-1)
|
|
preds = preds.squeeze(1)
|
|
eos_yet = eos_yet | (preds == self.field.decoder_stoi['<eos>'])
|
|
outs[:, t] = preds.cpu().apply_(self.map_to_full)
|
|
if eos_yet.all():
|
|
break
|
|
return outs
|
|
|
|
|
|
|
|
class DualPtrRNNDecoder(nn.Module):
|
|
|
|
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1):
|
|
super().__init__()
|
|
self.d_hid = d_hid
|
|
self.d_in = d_in
|
|
self.num_layers = num_layers
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.input_feed = True
|
|
if self.input_feed:
|
|
d_in += 1 * d_hid
|
|
|
|
self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout)
|
|
self.context_attn = LSTMDecoderAttention(d_hid, dot=True)
|
|
self.question_attn = LSTMDecoderAttention(d_hid, dot=True)
|
|
|
|
self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
|
|
self.context_question_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
|
|
|
|
def forward(self, input, context, question, output=None, hidden=None, context_alignment=None, question_alignment=None):
|
|
context_output = output.squeeze(1) if output is not None else self.make_init_output(context)
|
|
context_alignment = context_alignment if context_alignment is not None else self.make_init_output(context)
|
|
question_alignment = question_alignment if question_alignment is not None else self.make_init_output(question)
|
|
|
|
context_outputs, vocab_pointer_switches, context_question_switches, context_attentions, question_attentions, context_alignments, question_alignments = [], [], [], [], [], [], []
|
|
for emb_t in input.split(1, dim=1):
|
|
emb_t = emb_t.squeeze(1)
|
|
context_output = self.dropout(context_output)
|
|
if self.input_feed:
|
|
emb_t = torch.cat([emb_t, context_output], 1)
|
|
dec_state, hidden = self.rnn(emb_t, hidden)
|
|
context_output, context_attention, context_alignment = self.context_attn(dec_state, context)
|
|
question_output, question_attention, question_alignment = self.question_attn(dec_state, question)
|
|
vocab_pointer_switch = self.vocab_pointer_switch(torch.cat([dec_state, context_output, emb_t], -1))
|
|
context_question_switch = self.context_question_switch(torch.cat([dec_state, question_output, emb_t], -1))
|
|
context_output = self.dropout(context_output)
|
|
context_outputs.append(context_output)
|
|
vocab_pointer_switches.append(vocab_pointer_switch)
|
|
context_question_switches.append(context_question_switch)
|
|
context_attentions.append(context_attention)
|
|
context_alignments.append(context_alignment)
|
|
question_attentions.append(question_attention)
|
|
question_alignments.append(question_alignment)
|
|
|
|
context_outputs, vocab_pointer_switches, context_question_switches, context_attention, question_attention = [self.package_outputs(x) for x in [context_outputs, vocab_pointer_switches, context_question_switches, context_attentions, question_attentions]]
|
|
return context_outputs, context_attention, question_attention, context_alignment, question_alignment, vocab_pointer_switches, context_question_switches, hidden
|
|
|
|
|
|
def applyMasks(self, context_mask, question_mask):
|
|
self.context_attn.applyMasks(context_mask)
|
|
self.question_attn.applyMasks(question_mask)
|
|
|
|
def make_init_output(self, context):
|
|
batch_size = context.size(0)
|
|
h_size = (batch_size, self.d_hid)
|
|
return context.new_zeros(h_size)
|
|
|
|
def package_outputs(self, outputs):
|
|
outputs = torch.stack(outputs, dim=1)
|
|
return outputs
|